
WEBVIEW object

The WEBVEW object is a control that wraps the Microsoft WebView2 Edge Browser

control and allows you to embed web technologies (HTML, CSS and JavaScript) in

your OpenInsight forms.

Developer Notes

1. Equated constants for the WEBVIEW object can be found in the

PS_WEBVIEW_EQUATES insert record.

2. The WEBVIEW object relies on the installation of the “WebView2 Runtime

platform” in order to run (see Deployment Notes below).

3. It is recommended that developers review the Microsoft documentation for

the WebView2 Edge Browser along with the details of the OpenInsight

WEBVIEW object here. The Microsoft documentation can be found at:

https://learn.microsoft.com/en-us/microsoft-edge/webview2/

Deployment Notes

The WEBVIEW object relies on the “WebView2 Runtime platform” which is essentially

the same rendering engine that powers the Chromium-based Microsoft Edge

Browser – it contains modified Microsoft Edge binaries that are fine-tuned and tested

for WebView2-based applications.

When you distribute an app that includes WEBVIEW objects (like the OpenInsight IDE

itself), you need to consider how the WebView2 Runtime is distributed and updated

on client machines, as there are two options available:

• The automatically updated “Evergreen” Runtime

• A “Fixed Version” Runtime

The Evergreen Runtime

Current versions of Windows have an Evergreen version of the WebView2 platform

installed as part of the normal OS, so it is always available, and by default the

WEBVIEW object will use this when creating a new instance. The Evergreen runtime is

always kept up to date by Windows as part of the normal Windows Update cycle

(earlier versions of Windows 10 needed to have the Evergreen version installed

separately, but it’s been a core part of Windows 10 since 2022 now). This is by far the

easiest way to use the WebView2 platform.

The Fixed Version Runtime

It is also possible to create a WEBVIEW object from a “Fixed Version”, which means

that you may choose and supply a specific version of the WebView2 Runtime for use

with your application. This may be desirable when you need full control over the

versioning of the platform, where you know you have fully tested against it, and

where it meets your requirements. A Fixed Version Runtime will not be updated

automatically by Windows and you are responsible for installing and maintaining it

on client machines.

To use a Fixed Version Runtime with the WEBVIEW object:

• Ensure that it is installed correctly.

• Ensure the WEBVIEW object uses Fixed Version Runtime via the

BROWSEREXEFOLDER property:

o To specify a Fixed Version Runtime for a specific WEBVIEW object set

it’s BROWSEREXEFOLDER property at design time.

o To specify a Fixed Version Runtime for all WEBVIEW objects in your

application set the “Default BrowserExeFolder” parameter in the

Application Settings dialog box:

WebView2 Runtime instances

It should be noted that when WEBVIEW objects are created by the Presentation

Server, the WebView2 Runtime platform launches several instances of the “Microsoft

Edge WebView2” process in order to provide web-browsing functionality. This can

be seen in the example Task Manager screen shot below:

Like any other Chromium-based web browser this is part of the WEBVIEW object’s

normal operation and does not represent an issue. These instances are managed

and closed as required.

More information on deploying the WebView2 Runtime can be found on the

Microsoft website here:

https://learn.microsoft.com/en-us/microsoft-edge/webview2/concepts/distribution

https://learn.microsoft.com/en-us/microsoft-edge/webview2/concepts/distribution

Asynchronous Programming

When working with the WEBVIEW object is it very important to bear in mind that it is

built around an asynchronous programming model, i.e., when commands are

executed the results of those commands are normally returned via an event, not by

a value returned directly to the caller. The WEBVIEW object generally resists

attempts to force it into a synchronous paradigm and this should be avoided where

possible.

Some common examples of the asynchronous model are:

• Navigating to a page (via the NAVIGATE method): This results in several

different events being fired as the WEBVIEW object loads the requested

content.

• Executing JavaScript (via the EXECUTESCRIPT method): The results are

returned via the WEBSCRIPTRESULT event (note however, that we do provide

a synchronous version of this method, but the normal asynchronous version is

preferred).

• Creating the object: WEBVIEW objects are created asynchronously and may

not be ready for navigation as soon as the parent form is ready. Rather than

wait in a loop checking the READYSTATE property, your application should

listen for the WEBVIEWCREATED event to determine when it is safe to begin

using the control.

Communicating with the content in a WEBVIEW object

There are several different ways to communicate with the content hosted inside a

WEBVIEW object, and for the hosted content to communicate with your application

too.

Script Execution - Calling web-side code from Basic+

This is the most common and easiest method of interacting with WEBVIEW content

and involves executing JavaScript statements and functions via the EXECUTESCRIPT

method. You may also use the ADDINITSCRIPT method to add JavaScript that is

executed as pages are loaded into the WEBVIEW object as well.

WebMessaging - Calling web-side code from Basic+

The POSTJSONMESSAGE and POSTTEXTMESSAGE methods may be used to post data

to the hosted content in a WEBVIEW object. The content itself needs to add a

JavaScript “message” event listener to the “window.chrome.webview” object in

order to receive the message, so this method is for use with content that is designed

to be hosted within a WEBVIEW control (rather than say, hosted in a normal browser).

WebMessaging - Calling a Basic+ event from web-side code

Content hosted inside a WEBVIEW object may post data to its host by using the

JavaScript “window.chrome.webview.postMessage” method. This in turn triggers

the WEBVIEW object’s WEBMESSAGE event, along with the posted data.

(Note: The EnableWebMessages parameter in the WEBVIEW SETTINGS property must

be set to TRUE$ for WebMessaging to work.)

More information on WebView2 interop can be found on the Microsoft website here:

https://learn.microsoft.com/en-us/microsoft-edge/webview2/how-to/communicate-

btwn-web-native

https://learn.microsoft.com/en-us/microsoft-edge/webview2/how-to/communicate-btwn-web-native
https://learn.microsoft.com/en-us/microsoft-edge/webview2/how-to/communicate-btwn-web-native

User Interface Integration

There are some UI elements managed by the WEBVIEW object that may be

integrated more closely with the hosting OpenInsight application to give a more

consistent look and feel. These are:

• Context menus

• Dialog boxes

• Opening new windows

• Permission requests

• Authentication requests

Context menus

The WEBVIEW object supports the standard OpenInsight CONTEXTMENU property, so

it may be assigned a normal context menu and it will be displayed using the same

visual styling as the rest of your application.

If the CONTEXTMENU property is not assigned then the WEBVIEW object displays a

default context menu which normally exhibits the same look and feel as the menus

in the standard Edge Browser. However, it is possible to override this behavior by

setting the CONTEXTMENU property and merging the items from the default

WEBVIEW context menu with the items from the OpenInsight context menu, thereby

using the same visual styling as your application. This process takes place in the

WEBINITCONTEXTMENU and WEBCONTEXTMENU events and is detailed more fully

below.

Dialog boxes

The JavaScript language supports several standard dialog boxes:

• Alert

• Confirm

• BeforeUnload

• Prompt

As with the Context Menus these are normally displayed using the same look and

feel as the JavaScript dialog boxes in the standard Edge Browser, but this behavior

can be changed using the “EnableScriptDialogs” option in the WEBVIEW object’s

SETTINGS property. If set to False then the WEBVIEW uses normal OpenInsight dialogs

instead, which will match the visual styling of your application. See the

WEBSHOWDIALOG event for more details.

Opening new windows

Links in an HTML page can open content in a new window”, as can the JavaScript

“window.open” method. In this case there are three options available to the

OpenInsight application:

• Launch a secondary PS form containing another WEBVIEW object and direct

the current WEBVIEW object to load the new content into that.

• Allow the new content to be loaded into a new top-level WebView2

“WindowProxy” form – this is a minimal form (supplied by the WebView2

Runtime itself) that is designed to host a WEBVIEW object but offers less control

than the first option. It is not an OpenInsight form so cannot be accessed via

Basic+.

• Deny the new window request.

More information on this can be found in the documentation for the

WEBOPENWINDOW event below.

Permission requests

Some content loaded into a WEBVIEW object may require user permission before an

action can be taken. Examples include:

• Accessing the microphone

• Accessing the camera

• Accessing location data

• Reading the clipboard

In cases such as this a WEBPERMISSIONREQUEST event is raised, displaying an

OpenInsight dialog to allow the user to decide if permission is granted. See the

WEBPERMISSIONREQUEST event documentation for more details.

Authentication requests

When a WEBVIEW object receives an Authentication request from the server it

normally shows a dialog box to ask the user for their credentials. It is possible to

override this behavior by changing the AUTHENTICATIONMODE property and

handling the request in the WEBAUTHREQUEST event that is raised instead. See the

WEBAUTHREQUEST event documentation for more details.

WEBVIEW Properties

The WEBVIEW object supports the following properties

Name Description

ALLOWSINGLESIGNON Specifies if the object can use Single-Sign-On with Azure

AD and MS Account resources.

AUDIOPLAYING Specifies if the currently loaded document is playing

audio.

AUTHENTICATIONMODE Specifies if the WEBAUTHREQUEST event is used to handle

authentication requests.

BACKCOLOR Specifies the default background for documents.

BROWSEREXEFOLDER Specifies the folder containing the executable files for

the browser process.

BROWSERVISIBLE Specifies if the WebView browser component itself is

visible.

CANGOBACK Specifies if the object can navigate to a previous page

in its history.

CANGOFORWARD Specifies if the object can navigate to a next page in its

history.

COLORSCHEME Specifies the preferred color scheme for browser UI

elements.

DOCUMENTTITLE Returns the title for the currently loaded top-level

document.

ERRORTEXT Returns error information arising from the most recently

executed property or method operation.

EXCLUSIVEUDFACCESS Specifies if other processes can create a browser session

from the same user data environment.

EXTRABROWSERARGS Specifies extra arguments passed to the browser process

at startup.

HISTORY Returns a dynamic array of visited sites when history-

tracking is enabled.

INITIALIZED Specifies if the object is loaded and ready to accept

navigation requests.

INPRIVATEMODE Specifies if the object is operating in “InPrivate” mode.

LANGUAGE Specifies the default language used by the object.

MUTED Specifies if the audio output of the object is muted.

PDFTOOLBARSETTINGS Hides or shows variable items on the PDF toolbar.

PROCESSID Returns the ID of the object’s browser process.

PROFILENAME Specifies the profile name used for the object.

READYSTATE Specifies the status of the current navigation request.

SETTINGS Specifies the configuration options for the object.

SUSPENDED Returns TRUE$ if the object’s browser process is

suspended.

SYNCSTATUSLINE Specifies if the parent form’s STATUSLINE property is

automatically updated by the object.

SYNCTITLE Specifies if the parent form’s TEXT property is

automatically updated by the object.

TARGETVERSION Specifies the minimum version of the browser process

required by the object.

TRACKHISTORY Specifies if the WebView tracks the sites that the user has

visited.

URI Specifies the URI for the object to navigate to.

USERAGENT Specifies a custom User-Agent string for the object.

USERDATAFOLDER Specifies the folder used to store the user’s browsing

data.

VERSION Returns the version string of the browser component.

ZOOMFACTOR Specifies the zoom factor for the object.

The following Common GUI Object properties are not supported:

• COMPOSITED

• CURSOR

• ECHO

• FONT

• FORECOLOR

• TEXT

• TOOLTIP

ALLOWSINGLESIGNON property

Description

Specifies if the object can use single sign on with Azure Active Directory (AAD) and

personal Microsoft Account (MSA) resources.

Property Value

The ALLOWSINGLESIGNON property is a Boolean value of TRUE$ or FALSE$. This

property defaults to FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

All AAD accounts, connected to Windows and shared for all apps, are supported.

For MSA, SSO is only enabled for the account associated for Windows account login,

if any.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2EnvironmentOptions

get_AllowSingleSignOnUsingOSPrimaryAccount method on the Microsoft website.

Example

 // Example: Check to see if Single-Sign-On is enabled.

 SSOAllowed = Get_Property(CtrlEntID, "ALLOWSINGLESIGNON")

See Also

N/a.

AUDIOPLAYING property

Description

Specifies if the currently loaded document is playing audio.

Property Value

The AUDIOPLAYING property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property will return TRUE$ if audio is playing, even if the MUTED property is TRUE$.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2_8 get_IsDocumentPlayingAudio

method on the Microsoft website.

Example

 // Example: Check to see audio is playing in the WEBVIEW control.

 IsAudioPlaying = Get_Property(CtrlEntID, "AUDIOPLAYING")

See Also

WEBVIEW MUTED property, WEBVIEW WEBAUDIOCHANGED event, WEBVIEW

WEBMUTEDCHANGED event.

AUTHENTICATIONMODE property

Description

Specifies if the WEBAUTHREQUEST event handler is used to handle authentication

requests.

Property Value

The AUTHENTICATIONMODE property is a numeric value defined as follows:

Value Description

0 Default. Use the WEBVIEW object’s default authentication handler. This is

the default [sic] mode.

1 Custom. Use the WEBAUTHREQUEST handler.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

The default WEBVIEW behavior for authentication requests displays a dialog box with

the server’s Challenge string and prompts to enter a username and password. This

can be changed by setting the AUTHENTICATION MODE to 1 (Custom) and handling

it in the WEBAUTHREQUEST event.

Equates for use with this property can be found in the PS_WEBVIEW_EQUATES insert

record.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2_10

add_BasicAuthenticationRequested method on the Microsoft website.

Example

 // Example: Set the WEBVIEW object to use the WEBAUTHREQUEST event handler
 $Insert PS_WebView_Equates

 Call Set_Property_Only(CtrlEntID, "AUTHENTICATIONMODE", |
 WBV_AUTHMODE_CUSTOM$)

See Also

WEBVIEW AUTHENTICATE method, WEBVIEW WEBAUTHREQUEST event.

BACKCOLOR property

Description

Specifies the default background color for documents loaded in the WEBVIEW

object. This color is used when there is no web content loaded such as before the

initial navigation or between navigations. This also means web pages with

undefined CSS background properties or background properties containing

transparent pixels will render their contents over this color.

Property Value

The BACKCOLOR property is a single numeric RGB value. Note that unlike the

normal BACKCOLOR property gradient values are not supported. The default color

is white.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2Controller2

get_DefaultBackgroundColor method on the Microsoft website.

Example

 // Example: Set the default background color to Red
 $Insert Colors

 Call Set_Property_Only(CtrlEntID, "BACKCOLOR", RED$)

See Also

Common GUI BACKCOLOR property.

BROWSEREXEFOLDER property

Description

Specifies the location of the WebView2 Runtime executable files. If this is null then

the default BrowserExeFolder value specified in the SYSTEM WEBVIEWCONFIG

property is used instead. If that default value is also null then the WEBVIEW object

assumes that the Microsoft WebView2 “Evergreen” runtime version is installed.

Property Value

This property value may be null or may contain a relative or absolute folder path to

the location of the WebView2 runtime executable files.

When set in the Form Designer it may contain OS environment variable strings in the

form: %variableName% (not case-sensitive). These will be expanded with their actual

values when the WEBVIEW control is created at runtime.

This property may also contain the following OpenInsight environment variables

(case-sensitive) that are expanded with their Basic+ values when the control is

created at runtime:

 @APPID - Expands to @AppID<1>
 @USERNAME – Expands to @UserName

Using Get_Property at runtime returns the fully expanded version of the string.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

See the Deployment Notes section earlier in this document for further details on how

the WebView2 control handles the BROWSEREXEFOLDER property.

A default value for the BROWSEREXEFOLDER can be set via the SYSTEM

WEBVIEWCONFIG property. Note that the property value returned at runtime is the

effective value – i.e. if the object property is null, but the WEBVIEWCONFIG property

specifies a default value then that default value will be returned.

For more information on this topic please refer to the Windows WebView2

documentation regarding the CreateCoreWebView2EnvironmentWithOptions

function on the Microsoft website.

Example

 // Example: Assuming the following:
 //
 // 1) Windows has an environment variable LOCALAPPDATA set like so:
 //
 // LOCALAPPDATA=C:\Users\AgentC\AppData\Local
 //
 // 2) OpenInsight is logged into the EXAMPLES app with a username
 // of A_TEST
 //
 // 3) The BrowserExeFolder property is set in the Form Designer to
 // a value of:
 //
 // %localAppData%\@APPID_WebView2

 FolderVal = Get_Property(CtrlEntID, "BROWSEREXEFOLDER")

 // FolderVal now contains the value:
 //
 // C:\Users\AgentC\AppData\Local\EXAMPLES_WebView2

See Also

WEBVIEW Deployment Notes, SYSTEM WEBVIEWCONFIG property.

BROWSERVISIBLE property

Description

Specifies if the actual browser component of the WEBVIEW object is visible. The

WEBVIEW object is comprised of two parts: The embedded Edge WebView2 browser

component, and a very basic wrapper control that the browser uses as a surface to

display to.

The BROWSERVISIBLE property is synchronized to the normal VISIBLE property, i.e.

setting VISIBLE will also update BROWSERVISIBLE (but not vice-versa). The

BROWSERVISIBILE property can be used to control the visibility of the embedded

browser component separately if desired, although this is not normally necessary.

There are CPU and memory benefits when the WEBVIEW object (and therefore the

browser) is hidden. For instance, Chromium has code that throttles activities on the

page like animations and some tasks are run less frequently. Similarly, the browser

component will purge some caches to reduce memory usage.

The SUSPEND method can only be used when the WEBVIEW object is hidden.

Property Value

The BROWERVISIBLE property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2Controller_8 get_IsVisible method on

the Microsoft website.

Example

 // Example: Check if the browser component of the WEBVIEW object is visible…
 $Insert Logical

 IsBrowserVisible = Get_Property(CtrlEntID, "BROWSERVISIBLE")

See Also

Common GUI VISIBLE property, WEBVIEW SUSPEND method, WEBVIEW SUSPENDED

event.

CANGOBACK property

Description

Specifies if the WEBVIEW control can navigate back to a previous page in its

navigation history.

Property Value

The CANGOBACK property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2 get_CanGoBack method on the

Microsoft website.

Example

 // Example: Check to see if the Back button should be enabled.

 EnableBackButton = Get_Property(CtrlEntID, "CANGOBACK")

See Also

WEBVIEW CANGOFORWARD property, WEBVIEW HISTORY property, WEBVIEW BACK

method, WEBVIEW CLEARBROWSINGDATA method, WEBVIEW FORWARD method,

WEBVIEW WEBDATACLEARED event, WEBVIEW WEBHISTORYCHANGED event.

CANGOFORWARD property

Description

Specifies if the WEBVIEW control can navigate forward to a page in its navigation

history.

Property Value

The CANGOFORWARD property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2 get_CanGoForward method on the

Microsoft website.

Example

 // Example: Check to see if the Forward button should be enabled.

 EnableForwardButton = Get_Property(CtrlEntID, "CANGOFORWARD")

See Also

WEBVIEW CANGOBACK property, WEBVIEW HISTORY property, WEBVIEW BACK

method, WEBVIEW CLEARBROWSINGDATA method, WEBVIEW FORWARD method,

WEBVIEW WEBDATACLEARED event, WEBVIEW WEBHISTORYCHANGED event.

COLORSCHEME property

Description

Specifies the preferred color scheme for browser UI elements like context menus and

dialogs in the WEBVIEW object.

Property Value

The ColorScheme property is a numeric value corresponding to one of the following:

Value Description

0 Auto (default) – use whatever theme the OS is currently set to.

1 Light

2 Dark

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Equates for use with this property can be found in the PS_WEBVIEW_EQUATES insert

record.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2Profile get_PreferredColorScheme

method on the Microsoft website.

Example

 // Example: Set the color scheme to Dark
 $Insert PS_WebView_Equates

 Call_Set_Property_Only(CtrlEntID, "COLORSCHEME", WBV_COLORSCHEME_DARK$)

See Also

N/a.

DOCUMENTTITLE property

Description

Returns the title of the current loaded top-level document in the WEBVIEW object.

Property Value

The DOCUMENTTITLE property value is a string containing the title for the current top-

level document.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2 get_DocumentTitle method on the

Microsoft website.

Example

 // Example: Set the caption of the parent form to the same value as the
 // document loaded in the WEBVIEW.

 DocTitle = Get_Property(CtrlEntID, "DOCUMENTTITLE")
 Call Set_Property_Only(@Window, "TEXT", DocTitle)

See Also

WEBVIEW SYNCTITLE property, WEBVIEW NAVIGATE method, WEBVIEW

WEBTITLECHANGED event.

ERRORTEXT property

Description

Returns any error information arising from the most recently executed property or

method operation.

Property Value

The ERRORTEXT property value is a string containing any error details pertaining to

the most recent property access or method execution. This value is an empty string

if no errors have been recorded.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The ERRORTEXT property is cleared before a new property or method operation is

executed.

N/a.

Example

 // Example: Call the EXECUTESCRIPT method to get the document title and check
 // the ERRORTEXT variable if it indicates a failure

 If Exec_Method(CtrlEntID, "EXECUTESCRIPT", "document.title", FALSE$, TRUE$) Else
 // Get the error details...
 ErrorText = Get_Property(CtrlEntID, "ERRORTEXT")
 End

See Also

WEBVIEW LOGERRORS property.

EXCLUSIVEUDFACCESS property

Description

Specifies if other WEBVIEW objects can use an environment created from the same

user data folder as the current WEBVIEW object.

Property Value

The EXCLUSIVEUDFACCESS property value is a boolean value. When set to TRUE$ the

current WEBVIEW object has exclusive access to the user data folder. Other

WEBVIEW controls are prevented from accessing the folder and therefore cannot be

created unless they specify a different USERDATAFOLDER property. The default

value is FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2EnvironmentOptions2

get_ExclusiveUserDataFolderAccess method on the Microsoft website.

Example

 // Example: Check if the current WEBVIEW has exclusive access to the
 // user data folder.

 IsExclusiveUDF = Get_Property(CtrlEntID, "EXCLUSIVEUDFACCESS")

See Also

SYSTEM WEBVIEWCONFIG property, WEBVIEW USERDATAFOLDER property.

EXTRABROWSERARGS property

Description

Specifies the extra arguments that can be passed to the underlying Chromium

browser process when the WEBVIEW object is created.

Property Value

This property value is space-delimited string containing one or more command-line

switches in the format:

 "—" <switchName> "=" <switchValue>

E.g.

 --disable-the-thing=1 –-phase-converter-level=max

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

Default switches can be set via the SYSTEM WEBVIEWCONFIG property. Note that

the property value returned at runtime is the effective value – i.e. if the object

property is null, but the WEBVIEWCONFIG property specified a default value then the

default value will be returned.

If you specify a switch that conflicts with WebView functionality, it is ignored.

Specific features are disabled internally and blocked from being enabled. If a switch

is specified multiple times, only the last instance is used.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2EnvironmentOptions

put_AdditionalBrowserArguments method on the Microsoft website.

Example

 // Example: Get the Extra Browser Arguments for the WEBVIEW

 BrowserArgs = Get_Property(CtrlEntID, "EXTRABROWSERARGS")

See Also

SYSTEM WEBVIEWCONFIG property.

HISTORY property

Description

Returns a list of sites that have been navigated to by the WEBVIEW object in the

current session.

Property Value

The HISTORY property is an @fm-delimited dynamic array of sites with each entry

having an @vm-delimited format like so:

 <0,1> Document Title
 <0,2> URI

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The TRACKHISTORY property must be set to TRUE$ for this property to be active.

Setting the TRACKHISTORY property to FALSE$ will clear the data held in this property,

as will using the CLEARBROWSINGDATA method.

Note that this property is a simple in-memory cache of navigated sites and is not

saved when the WEBVIEW object is destroyed. It is provided to allow easy runtime

access to the object’s current browsing history and it is not the same as the standard

full browsing history that is stored to disk in the User Data Folder as part of normal

web-browsing operations. It is not affected by the INPRIVATEMODE property.

Example

 // Example: Get the browsing history and load it into the EDT_HISTORY EditTable
 // control

 HistList = Get_Property(CtrlEntID, "HISTORY")
 Call Set_Property_Only(@Window : ".EDT_HISTORY", "LIST", HistList)

 // Check to see if the WEBVIEW is saving browser data.

 IsPrivate = Get_Property(CtrlEntID, "INPRIVATEMODE")

See Also

WEBVIEW CANGOBACK property, WEBVIEW CANGOFORWARD property, WEBVIEW

INPRIVATEMODE property, WEBVIEW TRACKHISTORY property, WEBVIEW BACK

method, WEBVIEW CLEARBROWSINGDATA method, WEBVIEW FORWARD method,

WEBVIEW WEBDATACLEARED event, WEBVIEW WEBHISTORYCHANGED, WEBVIEW

WEBNAVIGATED event.

INITIALIZED property

Description

Specifies if the WEBVIEW object has been initialized successfully and is ready to

begin navigation operations.

Property Value

This property is a boolean value. It returns TRUE$ if the WEBVIEW object is initialized

and ready for use, or FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property may be used in a loop during a form’s CREATE event processing to

check if the WEBVIEW object is ready to begin navigating. However, this requires

further complications such as allowing the system to process waiting events,

handling timeouts, and ensuring the form hasn’t been closed (see the example

below).

A better and preferred alternative is to use the WEBVIEWCREATED event, which is

raised by the WEBVIEW object when it has been initialized successfully and is

therefore in the appropriate state to begin navigating.

Example

 // Example: Wait until the WBV_BROWSER WEBVIEW control is ready on the form,
 // timing out after 1 minute (60000 milliseconds)

 Declare Function MsWin_GetTickCount64
 $Insert Logical

 EndTickCount = (MsWin_GetTickCount64() + 60000)
 WbvReady = FALSE$

 Loop
 WbvInit = Get_Property(@Window : ".WBV_BROWSER", "INITIALIZED")
 Until WbvInit
 Call Exec_Method("SYSTEM", "PROCESSEVENTS", TRUE$)
 While Get_Property(@Window, "HANDLE")
 While (MsWin_GetTickCount64() < EndTickCount)
 Repeat

 If WbvInit Then
 // OK to start browsing...
 End

See Also

WEBVIEW READYSTATE property, WEBVIEW WEBVIEWCREATED event.

INPRIVATEMODE property

Description

Specifies if the WebView is operating in “InPrivate” mode.

Property Value

The INPRIVATEMODE property is a Boolean value of TRUE$ or FALSE$. When set to

TRUE$ browsing data such as history, temporary internet files and cookies etc) are

not saved to disk once the browsing session has ended.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

This property does not affect the TRACKHISTORY and HISTORY properties because

they are never saved to disk.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2ControllerOptions

get_IsInPrivateModeEnabled method on the Microsoft website.

Example

 // Example: Check to see if the WEBVIEW is saving browser data.

 IsPrivate = Get_Property(CtrlEntID, "INPRIVATEMODE")

See Also

WEBVIEW HISTORY property, WEBVIEW TRACKHISTORY property, WEBVIEW

CLEARBROWSINGDATA method.

LANGUAGE property

Description

Specifies the default display language for the WEBVIEW object, which is used for

browser UI elements like context menus and dialogs. It also applies to the accept-

languages HTTP header that is sent to websites.

Property Value

This property is a string. When null it defaults to the current user’s language settings,

otherwise it should be in the format:

 language[-country]

Where language is the two-letter ISO 639 code, and the optional country part is the

two-letter ISO 3166 code.

E.g.

 en-gb

 fr-ca

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2EnvironmentOptions get_Language

method on the Microsoft website.

Example

 // Example: Get the default language setting.

 WebViewLanguage = Get_Property(CtrlEntID, "LANGUAGE")

See Also

N/a.

MUTED property

Description

Specifies if all audio output from this WEBVIEW object is muted or not.

Property Value

The MUTED property is a Boolean value of TRUE$ or FALSE$. When TRUE$ all audio

output is prevented.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2_8 get_IsMuted method on the

Microsoft website.

Example

 // Example: Mute all audio output in the WEBVIEW control
 $Insert Logical

 Call Set_Property_Only(CtrlEntID, "MUTED", TRUE$)

See Also

WEBVIEW AUDIOPLAYING property, WEBVIEW WEBAUDIOCHANGED event, WEBVIEW

WEBMUTEDCHANGED event.

PDFTOOLBARSETTINGS property

Description

Specifies which features of the toolbar are visible when a PDF document is loaded

into the WEBVIEW object.

Property Value

The PDFTOOLBARSETTINGS property is an @fm-delimited dynamic array of Boolean

values with the following structure:

 <1> Hide Bookmarks
 <2> Hide Fit-Page
 <3> Hide Page Layout
 <4> Hide Page Selector
 <5> Hide Print
 <6> Hide Save
 <7> Hide Save-As
 <8> Hide Search
 <9> Hide Zoom-In
 <10> Hide Zoom-Out

Setting a value to TRUE$ hides the specified toolbar feature, while setting it to FALSE$

will display it. By default all values are set to FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Changes to this property apply to all WEBVIEW objects in the same environment and

using the same profile. Changes to this setting apply only after the next navigation.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2Settings7 get_HiddenPdfToolbarItems

method on the Microsoft website.

Example

 // Example: Hide the Save and Save-As buttons in the WEBVIEW's PDF toolbar
 $Insert PS_WebView_Equates

 PDFTbrSettings = Get_Property(CtrlEntID, "PDFTOOLBARSETTINGS")

 PDFTbrSettings<WBV_PDFTBRSET_POS_HIDESAVE$> = TRUE$
 PDFTbrSettings<WBV_PDFTBRSET_POS_HIDESAVEAS$> = TRUE$

 Call Set_Property_Only(CtrlEntID, "PDFTOOLBARSETTINGS", PDFTbrSettings)

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method, WEBVIEW PRINT2PDF method.

PROCESSID property

Description

Returns the ProcessID of the browser process hosting the WEBVIEW object.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2 get_BrowserProcessId method on the

Microsoft website.

Example

 // Example: Get the browser Process ID.

 ProcessID = Get_Property(CtrlEntID, "PROCESSID")

See Also

WEBVIEW BROWSEREXEFOLDER property.

PROFILENAME property

Description

Specifies the profile name used by the WEBVIEW object. This name is used to create

the profile folder in the User Data Folder (UDF – see the USERDATAFOLDER property).

Property Value

The PROFILENAME property may be null or it may be a string value which has the

following restrictions:

• It has a maximum length of 64 characters

• It is ASCII case-insensitive

• It may only contain the following characters:

o alphabet characters: a-z and A-Z

o digit characters: 0-9

o ‘#', '@', '$', '(', ')', '+', '-', '_', '~', '.', ' ' (space)

• It must not end with a period '.' or ' ' (space)

When set in the Form Designer it may contain OS environment variable strings in the

form: %variableName% (not case-sensitive). These will be expanded with their actual

values when the WEBVIEW control is created at runtime.

This property may also contain the following OpenInsight environment variables

(case-sensitive) that are expanded with their Basic+ values when the control is

created at runtime:

 @APPID - Expands to @AppID<1>
 @USERNAME – Expands to @UserName

Using Get_Property at runtime returns the fully expanded version of the string.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

A default value for the PROFILENAME can be set via the SYSTEM WEBVIEWCONFIG

property. Note that the property value returned at runtime is the effective value –

i.e. if the object property is null, but the WEBVIEWCONFIG property specifies a

default value then that default value will be returned.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2ControllerOptions get_ProfileName

method on the Microsoft website.

Example

 // Example: Get the profile name.

 ProfileName = Get_Property(CtrlEntID, "PROFILENAME")

See Also

SYSTEM WEBVIEWCONFIG property, WEBVIEW USERDATAFOLDER property.

READYSTATE property

Description

Specifies the status of a navigation request. As the WEBVIEW object navigates to a

page it reaches certain defined stages, and this property is updated at each stage

so it can be used to track the progress of the navigation.

Property Value

This property is a numeric value. As each stage in the navigation is reached it is

updated to indicate its progress:

Stage Value Description

Uninitialized 0 The WEBVIEW object has not navigated to any

pages yet.

Navigating 1 The WEBVIEW object has begun navigating to a

page. The WEBNAVIGATING event is raised.

ContentLoading 2 The WEBVIEW object has begun loading

content for the current page. The

WEBCONTENTLOADING event is raised.

ContentLoaded 3 The WEBVIEW has loaded DOM content for the

current page. The WEBCONTENTLOADED event

is raised.

Navigated 4 The WEBVIEW object has finished navigating to

a page. The WEBNAVIGATED event is raised.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

Due to the preference for asynchronous operations when using the WEBVIEW object,

use of the various “Web” navigation events (WEBNAVIGATING, WEBNAVIGATED etc.)

is encouraged rather waiting in a loop checking the READYSTATE property to see the

status of the request.

READYSTATE is intended to be used in a loop once a navigation request has been

made to check the progress of the request. However, this requires dealing with

further complications such as allowing the system to process waiting events,

handling timeouts, and ensuring the form hasn’t been closed, thereby destroying the

WEBVIEW object (see the example below).

A better and preferred alternative is to use the appropriate events, which are raised

by the WEBVIEW object as it navigates:

• WEBNAVIGATING

• WEBCONTENTLOADING

• WEBCONTENTLOADED

• WEBNAVIGATED

Using these conforms to the asynchronous programming paradigm preferred by the

WEBVIEW object.

Note also that the READYSTATE property simply reflects the state of the most recent

navigation event – it is not linked to a specific URI and so does not identify the

navigation requests when dealing with concurrent operations, unlike the events

listed above.

Constants for use with the READYSTATE property can be found in the

PS_WEBVIEW_EQUATES insert record.

Example

 // Example: Wait in a loop, checking the READYSYATE until navigation has finished.

 Declare Function MsWin_GetTickCount64
 $insert PS_WebView_Equates
 $Insert Logical

 Call Exec_Method(@Window : ".WBV_BROWSER", |
 "NAVIGATE", |
 "https://www.revelation.com")

 TimeOut = (MsWin_GetTickCount64() + 10000) ; // 10 seconds

 Loop
 Call Exec_Method("SYSYTEM", "PROCESSEVENTS", TRUE$)
 RS = Get_Property(@Window : ".WBV_BROWSER", "READYSTATE")
 Until (RS >= WBV_READYSTATE_CONTENTLOADED$)
 Until (MsWin_GetTickCount64() > TimeOut)
 While Get_Property(@Window : ".WBV_BROWSER", "HANDLE")
 Repeat

See Also

WEBVIEW INITIALIZED property, WEBVIEW URL property, WEBVIEW NAVIGATE method,

WEBVIEW WEBCONTENTLOADED event, WEBVIEW WEBCONTENTLOADING event,

WEBVIEW WEBNAVIGATED event, WEBVIEW WEBNAVIGATING event, WEBVIEW

WEBVIEWCREATED event.

SETTINGS property

Description

Specifies the configuration options for the WEBVIEW object.

Property Value

The SETTINGS property value is an @fm-delimited dynamic array of boolean flags

that control the options for the WEBVIEW object:

 <1> EnableAccleratorKeys
 <2> EnableAutoFill
 <3> EnableContextMenus
 <4> EnableDevTools
 <5> EnableDefaultErrorPage
 <6> EnablePasswordAutoSave
 <7> EnablePinchZoom
 <8> EnableScripts
 <9> EnableScriptDialogs
 <10> EnableSwipeNavigation
 <11> EnableStatusBar
 <12> EnableWebMessages
 <13> EnableZoom

Setting Description

EnableAccleratorKeys When this setting is set to FALSE$ it disables all accelerator keys

that access features specific to a web browser,. Defaults to

TRUE$.

EnableAutoFill Specifies whether autofill for information like names, street and

email addresses, phone numbers, and arbitrary input is

enabled. Defaults to TRUE$.

EnableContextMenus Setting this option to FALSE$ prevents the default context

menus from being shown to the user. Defaults to TRUE$.

EnableDevTools Specifies if the user can use the context menu or keyboard

shortcuts to open the DevTools window. Defaults to TRUE$.

EnableDefaultErrorPage Specifies if the built-in error pages for navigation failure and

render process failure are used. Defaults to TRUE$.

EnablePasswordAutoSave Specifies if autosave for password information is enabled.

Defaults to FALSE$.

EnablePinchZoom Enables or disables the ability of the end user to use a pinching

motion on touch input enabled devices to scale the web

content. Defaults to TRUE$.

EnableScripts Specifies if JavaScript is enabled in future navigations. Note

that This only affects scripts in the document. Scripts injected

with EXECUTESCRIPT method run even if script is disabled. The

default value is TRUE$.

EnableScriptDialogs Specifies if the default JavaScript dialogs (alert, confirm,

prompt and beforeunload) are used by the WebView control.

When set to FALSE$ OpenInsight dialogs are used instead (See

the WEBSHOWDIALOG event for more details). Defaults to

TRUE$.

EnableSwipeNavigation Enables or disables the ability of the end user to use swiping

gesture on touch input enabled devices to navigate. Defaults

to TRUE$.

EnableStatusBar Specifies if the status bar is displayed. Defaults to TRUE$.

EnableWebMessages Specifies communication from the host to the top-level HTML

document of the WEBVIEW object is allowed using the

POSTJSONMESSAGE and POSTTEXTMESSAGE methods, and the

postMessage function of the JavaScript

window.chrome.webview object (see the WEBMESSAGE event

for more details). Defaults to TRUE$.

EnableZoom When TRUE$ the user may zoom the web content using the

keyboard and mouse. Defaults to TRUE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Constants for use with the SETTINGS property can be found in the

PS_WEBVIEW_EQUATES insert record.

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2Settings interfaces and methods on

the Microsoft website.

Example

 // Example: Ensure that we are using OpenInsight script dialogs rather than the
 // default JavaScript ones.
 $Insert PS_WebView_Equates

 WBVSettings = Get_Property(CtrlEntID, "SETTINGS")

 WBVSettings<WBV_SET_POS_SCRIPTDIALOGS$> = FALSE$

 Call Set_Property_Only(CtrlEntID, "SETTINGS", WBVSettings)

See Also

WEBVIEW ZOOMFACTOR property, WEBVIEW EXECUTESCRIPT method, WEBVIEW

OPENDEVTOOLS method, WEBVIEW POSTJSONMESSAGE method, WEBVIEW

POSTTEXTMESSAGE method, WEBVIEW WEBINITCONTEXTMENU event, WEBVIEW

WEBMESSAGE event, WEBVIEW SHOWDIALOG event, WEBVIEW STATUSTEXTCHANGED

event.

SUSPENDED property

Description

Indicates if the WEBVIEW object is currently suspended.

Property Value

The SUSPENDED property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2_3 get_ get_IsSuspended method on

the Microsoft website.

Example

 // Example: Check to see if the WEBVIEW control is suspended.

 IsSuspended = Get_Property(CtrlEntID, "SUSPENDED")

See Also

WEBVIEW BROWSERVISIBLE property, WEBVIEW RESUME method, WEBVIEW SUSPEND

method, WEBVIEW WEBSUPENDED event.

SYNCSTATUSLINE property

Description

Specifies if the parent form’s STATUSLINE property is automatically updated when the

WEBVIEW object’s status text changes.

Property Value

The SYNCSTATUSLINE property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

N/a.

Example

 // Example: Ensure the STATUSLINE control in the parent form is updated
 // from the WEBVIEW object when it’s status text changes.

 Call Set_Property_Only(CtrlEntID, "SYNCSTATUSLINE", TRUE$)

See Also

WINDOW STATUSLINE property, WEBVIEW WEBSTATUSTEXTCHANGED event.

SYNCTITLE property

Description

Specifies if the parent form’s caption text (TEXT property) is automatically updated

when the title of the top-level document is changed in the WEBVIEW object.

Property Value

The SYNCTITLE property is a Boolean value of TRUE$ or FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

N/a.

Example

 // Example: Ensure the parent form’s caption is updated when the document
 // title attribute is changed in the WEBVIEW object.

 Call Set_Property_Only(CtrlEntID, "SYNCTITLE", TRUE$)

See Also

WEBVIEW DOCUMENTTITLE property, WINDOW TEXT property, WEBVIEW NAVIGATE

method, WEBVIEW WEBTITLECHANGED event.

TARGETVERSION property

Description

Specifies the minimum version of the Microsoft WebView2 runtime libraries that are

compatible with the WEBVIEW object.

Property Value

The TARGETVERSION property is four-part period (“.”) delimited string formatted as

follows:

 <majorNo> "." <minorNo> "." <buildNo> "." <releaseNo>

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

A default value for the TARGETVERSION can be set via the SYSTEM WEBVIEWCONFIG

property. Note that the property value returned at runtime is the effective value –

i.e. if the object property is null, but the WEBVIEWCONFIG property specifies a

default value then that default value will be returned.

For more information on this topic please refer to the Windows WebView2

documentation regarding the CreateCoreWebView2EnvironmentWithOptions

function on the Microsoft website.

Example

 // Example: Check to see if we have a target version defined for the WEBVIEW control

 TargetVersion = Get_Property(CtrlEntID, "TARGETVERSION")

See Also

WEBVIEW Deployment Notes, WEBVIEW VERSION property, SYSTEM WEBVIEWCONFIG

property.

TRACKHISTORY property

Description

Specifies if the WEBVIEW object keeps a list of sites that it has navigated to during the

current session (exposed as the HISTORY property).

Property Value

The TRACKHISTORY property is a Boolean value of TRUE$ or FALSE$. When set to

TRUE$ the HISTORY property may be used to see a list of sites that the WEBVIEW

object has navigated to. Defaults to FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Setting the TRACKHISTORY property to FALSE$ will clear the data held in the HISTORY

property, as will using the CLEARBROWSINGDATA method.

Example

 // Example: Ensure the WEBVIEW object is updating the HISTORY property during
 // navigation

 Call Set_Property_Only(CtrlEntID, "TRACKHISTORY", TRUE$)

See Also

WEBVIEW HISTORY property, WEBVIEW INPRIVATEMODE property, WEBVIEW

NAVIGATED event.

URI property

Description

Specifies the URI (Uniform Resource Identifier) of the top-level document in the

WEBVIEW object.

Property Value

The URI property value is a string containing the identifier of the current top-level

document. When this property is set the WEBVIEW object will navigate to the new

value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2 get_Source and Navigate methods

on the Microsoft website.

Example

 // Example: Navigate to the Revelation Software home page.

 Call Set_Property_Only(CtrlEntID, "URI", "https://www.revelation.com")

See Also

WEBVIEW NAVIGATE method, WEBVIEW WEBNAVIGATING event, WEBVIEW

NAVIGATED event.

USERAGENT property

Description

Specifies a default “User-Agent” string sent by the WEBVIEW object in a request.

Property Value

The USERAGENT property contains the string sent in the “User-Agent” header when

the WEBVIEW object makes a request to a server. It defaults to the same value as

the “User-Agent” of the Microsoft Edge web-browser.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

For more information on this property please refer to the Windows WebView2

documentation regarding the ICoreWebView2Settings2 get_UserAgent and

put_UserAgent methods on the Microsoft website.

Example

 // Example: Specify a custom User-Agent string for the WEBVIEW object

 Call Set_Property_Only(CtrlEntID, "USERAGENT", "OpenInsight WebView 10.2")

See Also

WEBVIEW NAVIGATE method.

USERDATAFOLDER property

Description

Specifies the location of the WEBVIEW object’s user data folder (UDF). The UDF is a

folder stored on the user’s machine that stores browser data such as cookies,

permissions, and cached resources. Each instance of the WEBVIEW object is

associated with a UDF (Multiple WEBVIEW objects may share a UDF unless it is set to

exclusive access as per the EXCLUSIVEUDFACCESS property).

Property Value

This property value may be null or may contain a relative or absolute folder path to

the location of the UDF. If this is null the default UserDataFolder value specified in

the SYSTEM WEBVIEWCONFG property is used instead.

When set in the Form Designer it may contain OS environment variable strings in the

form: %variableName% (not case-sensitive). These will be expanded with their actual

values when the WEBVIEW control is created at runtime.

This property may also contain the following OpenInsight environment variables

(case-sensitive) that are expanded with their Basic+ values when the control is

created at runtime:

 @APPID - Expands to @AppID<1>
 @USERNAME – Expands to @UserName

Using Get_Property at runtime returns the fully expanded version of the string.

Note that a UDF should meet the following requirements:

• The custom UDF location must have appropriate Read/Write permissions

• Avoid creating a UDF on a network drive. This can result in slowdowns,

crashes, or loss of data.

If no value is set for this property in either the WEBVIEW object itself or via the SYSTEM

WEBVIEWCONFIG property, then the object would use/create a default folder in the

directory that OpenInsight is running in called “OpenInsight.exe.WebView2”.

Because many OpenInsight systems are executed from a network they may not

have appropriate permissions in this folder so this not an ideal scenario and must be

avoided. For this reason, the WEBVIEWCONFIG property always returns a default

value of:

 %localappdata%\RevSoft\WBV\@APPID_@USERNAME

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

See the Deployment Notes section earlier in this document for further details on how

the WebView2 control handles the USERDATAFOLDER property.

Note that the property value returned at runtime is the effective value – i.e., if the

object property is null, but the WEBVIEWCONFIG property specifies a default value,

then that default value will be returned. A default value for the USERDATAFOLDER is

always set via the SYSTEM WEBVIEWCONFIG property as noted above.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2Environment7 get_UserDataFolder

method, and the WebView2 “Manage user data folders” page on the Microsoft

website.

Example

 // Example: Assuming the following:
 //
 // 1) Windows has an environment variable LOCALAPPDATA set like so:
 //
 // LOCALAPPDATA=C:\Users\AgaentC\AppData\Local
 //
 // 2) OpenInsight is logged into the EXAMPLES app with a username
 // of A_TEST
 //
 // 3) The UserDataFolder property is set in the Form Designer to
 // a value of:
 //
 // %localAppData%\@APPID_@USERNAME_WebView2UDF

 FolderVal = Get_Property(CtrlEntID, "USERDATAFOLDER")

 // FolderVal now contains the value:
 //
 // C:\Users\AgaentC\AppData\Local\EXAMPLES_A_TEST_WebView2UDF

See Also

WEBVIEW Deployment Notes, WEBVIEW EXCLUSIVEUDFACCESS property, SYSTEM

WEBVIEWCONFIG property.

VERSION property

Description

Returns the version of the Microsoft WebView2 runtime libraries that are being used

by the WEBVIEW object.

Property Value

The VERSION property is four-part period (“.”) delimited string formatted as follows:

 <majorNo> "." <minorNo> "." <buildNo> "." <releaseNo>

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2Environment get_BrowserVersionString

method on the Microsoft website.

Example

 // Get the version of the WEBVIEW control

 Version = Get_Property(CtrlEntID, "VERSION")

See Also

WEBVIEW Deployment Notes, WEBVIEW TARGETVERSION property, SYSTEM

WEBVIEWCONFIG property.

ZOOMFACTOR property

Description

Specifies the default zoom factor for the WEBVIEW object.

Property Value

The ZOOMFACTOR property is a numeric value between 0.25 and 5.0

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

A zoom factor that is applied via this property becomes the new default zoom for

the WEBVIEW object. This zoom factor applies across all navigations and is the zoom

factor that the WEBVIEW object is returned to when the user presses Ctrl+0. When

the zoom factor is changed by the user that zoom applies only to the current page.

Setting this property does not trigger a WEBZOOMCHANGED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the IICoreWebView2Controller get_ZoomFactor and

put_ZoomFactor methods on the Microsoft website.

Example

 // Set the default Zoom Factor to 200% (2.0)

 Call Set_Property_Only(CtrlEntID, "ZOOMFACTOR", 2.0)

See Also

WEBVIEW WEBZOOMCHANGED event.

WEBVIEW Methods

The WEBVIEW object supports the following methods:

Name Description

ADDCDPEVENT Allows the WEBVIEW object to receive

notifications for a specified CDP event.

ADDINITSCRIPT Adds a script to the WEBVIEW object that is run

before documents are loaded.

ALLOWOPENWINDOW Allows the WEBVIEW object to open a new

window from the WEBOPENWINDOW event.

AUTHENTICATE Allows the WEBVIEW to return credentials or

cancel a Basic Authentication challenge.

BACK Navigates to the previous page in the navigation

history.

CANCELCONTEXTMENU Cancels a context menu request and releases

any associated resources.

CANCELDIALOG Cancels a “show dialog” request and releases

any associated resources.

CANCELPERMISSIONREQUEST Cancels and denies any pending permission

request and releases any associated resources.

CLEARBROWSINGDATA Clears browsing data stored by the WEBVIEW

object.

CONFIRMDIALOG Notifies the WEBVIEW object that the “show

dialog” request was processed.

COPY Copies the current selection in the WEBVIEW

object to the clipboard.

CUT Removes the current selection from the WEBVIEW

object and copies it to the clipboard.

DELETECOOKIES Removes one or more cookies from the WEBVIEW

object.

DENYOPENWINDOW Prevents the WEBVIEW object from opening a

new window in the WEBOPENWINDOW event.

EXECUTECDPMETHOD Executes a specified CDP method.

EXECUTESCRIPT Executes the specified JavaScript.

FORWARD Navigates to the next page in the navigation

history.

GETCOOKIES Returns a list of cookies from the WEBVIEW object

that match a specified URI.

MAPHOSTNAMETOFOLDER Creates a mapping between a virtual host name

and a local folder path

NAVIGATE Navigates the WEBVIEW object to the specified

URI.

OPENBROWSERTASKMANAGER Opens the browser task manager window for the

WEBVIEW object.

OPENDEVTOOLS Opens the DevTools window for the current

document in the WEBVIEW object.

PASTE Pastes the clipboard contents at the insertion

point (replaces current selection) in the WEBVIEW

object.

POSTJSONMESSAGE Posts a JSON-formatted WebMessage to the top-

level document in the WEBVIEW control.

POSTTEXTMESSAGE Posts a text-formatted WebMessage to the top-

level document in the WEBVIEW control.

PRINT Opens a dialog box to print the current

document in the WEBVIEW object.

PRINTTOPDF Print the current page to PDF asynchronously with

the provided settings.

REDO Discards the results of the last Undo command.

RELOAD Reloads the current top-level document in the

WEBVIEW object.

REMOVECDPEVENT Stops the WEBVIEW object from receiving

notifications for a specified CDP event.

REMOVEINITSCRIPT Removes the specified JavaScript previously

added with the ADDINTISCRIPT method.

RESUME Resumes a suspended WEBVIEW object.

SAVETOFILE Saves the contents of the WEBVIEW object to disk

using the MHTML format.

SELECTALL Selects all the content of the editable region of

the WEBVIEW object.

SETCOOKIE Adds or updates a cookie in the WEBVIEW

object.

SETHTML Loads a HTML document into the WEBVIEW

object as a string.

SETPERMISSION Allows or denies access to privileged resources

from the content in the WEBVIEW object.

STOP Stops all navigations and pending resource

fetches in the WEBVIEW object.

SUSPEND Suspends a WEBVIEW object, forcing it to

consume less memory and resources.

UNDO Undoes the last command.

UNMAPHOSTNAME Removes a mapping between a virtual host

name and a local folder path.

ADDCDPEVENT method

Description

Allows the WEBVIEW object to receive notifications for a specified Chrome DevTools

Protocol (CDP) event. The Chrome DevTools Protocol allows for tools to instrument,

inspect, debug and profile Chromium, Chrome and other Blink-based browsers.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "ADDCDPEVENT", |

 EventName)

Parameters

Name Required Description

EventName Yes Specifies the name of the CDP event to listen for. This is case-

sensitive.

Returns

"1" (TRUE$) if the event was added successfully, "0" (FALSE$) otherwise.

Remarks

Use the REMOVECDPEVENT method to stop receiving notifications for the CDP event.

More information on the CDP can be found on here along with the events that are

supported:

 https://chromedevtools.github.io/devtools-protocol/

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 GetDevToolsProtocolEventReceiver

method on the Microsoft website.

Example

 // Example: Listen for "CDP Log" events from the WEBVIEW object. The
 // CDP offers a logging service - to monitor log entries in OpenInsight
 // we can do the following:
 //
 // 1) Listen for the "Log.entryAdded" event
 // 2) Begin logging by using the CDP "Log.enable" method
 // 3) Handle the new log entry in the WEBCDPEVENT event
 // 4) Stop logging by using the CDP "Log.disable" method.

 $Insert Logical

 // Listen for the "Log.entryAdded" event
 IsOk = Exec_Method(CtrlEntID, "ADDCDPEVENT", "Log.entryAdded")

 // Begin logging by using the CDP "Log.enable" method
 IsOK = Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", "Log.enable", "", TRUE$)

 // In the WEBCDPEVENT we now receive notifications when a log entry
 // is added along with a JSON object containing the details.

 ...

 // Stop logging by using the CDP "Log.disable" method
 IsOK = Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", "Log.disable", "", TRUE$)

See Also

WEBVIEW EXECUTECDPMETHOD method, WEBVIEW REMOVECDPEVENT method,

WEBVIEW WEBCDPEVENT event, WEBVIEW WEBCDPMETHODRESULT event.

ADDINITSCRIPT method

Description

Adds the provided JavaScript to a list of scripts that should be run after the global

object has been created, but before the HTML document has been parsed and

before any other script included by the HTML document is run (The script runs on all

top-level document and child frame page navigations).

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "ADDINITSCRIPT", |

 Script)

Parameters

Name Required Description

Script Yes Specifies the JavaScript to add.

Returns

"1" (TRUE$) if the script was added successfully, "0" (FALSE$) otherwise.

Remarks

The script is added asynchronously and given a unique identifier. The actual result of

the method and the identifier can be accessed in the WEBINITSCRIPTADDED event.

The identifier can be used with the REMOVEINITSCRIPT method to remove it if

desired.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2

AddScriptToExecuteOnDocumentCreated method on the Microsoft website.

Example

 // Example: Display a message containing the document URI each
 // time a document is loaded.

 Script = "alert(window.location.href);"

 IsOK = Exec_Method(CtrlEntID, "ADDINITSCRIPT", Script)

 // The results of this method call are passed in the
 // WEBINITSCRIPTADDED event.

See Also

WEBVIEW REMOVEINITSCRIPT method, WEBVIEW WEBINITSCRIPTADDED event.

ALLOWOPENWINDOW method

Description

This method should be called when handling a WEBOPENWINDOW event to allow

the WEBVIEW control to open the default WebView2 window or use another

specified WEBVIEW object instead.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "ALLOWOPENWINDOW", |

 OpenID, |

 WebViewID)

Parameters

Name Required Description

OpenID Yes ID of the “open window” request as passed from the

WEBOPENWINDOW event.

WebViewID No Name of an existing WEBVIEW object to use instead of the

default WebView2 Window when opening a new window.

Returns

"1" (TRUE$) if the method was executed successfully, "0" (FALSE$) otherwise.

Remarks

When the content inside the WEBVIEW object requests to open a new window (e.g.

via the JavaScript “window.open” method) then a WEBOPENWINDOW event is

raised. In this event the ALLOWOPENWINDOW method may be called to allow the

window to be opened or redirected to another existing WEBVIEW object, or the

DENYOPENWINDOW method may called to prevent it (The system prompted

WEBOPENWINDOW handler simply allows a new WebView2 to be opened).

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_NewWindowRequested

method on the Microsoft website.

Example

 Function WEBOPENWINDOW(CtrlEntID, CtrlClassID, OpenID, URI, WindowInfo, |
 UserInitiated)

 // Example: A WEBOPENWINDOW event handler that creates a new OpenInsight
 // form (TEST_WEBVIEW_OPENWIN) with a WEBVIEW control called WBV_BROWSER,
 // and directs the system to use that for displaying the content.

 WinID = Start_Window("TEST_WEBVIEW_OPENWIN", "", "")
 If BLen(WinID) Then

 Call Exec_Method(CtrlEntID, |
 "ALLOWOPENWINDOW", |
 OpenID, |
 WinID : ".WBV_BROWSER")

 End

 Return FALSE$

See Also

WEBVIEW DENYOPENWINDOW method, WEBVIEW WEBOPENWINDOW event.

AUTHENTICATE method

Description

This method should be called when handling a WEBAUTHREQUEST event to return the

credentials for a Basic Authentication challenge, or to cancel it.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "AUTHENTICATE", URI, UserName, |

 Password, CancelFlag)

Parameters

Name Required Description

URI Yes URI that triggered the authentication request.

UserName No Username to return to the server.

Password No Password to return to the server.

CancelFlag No Set to TRUE$ to cancel the request. Defaults to FALSE$.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

A WEBAUTHREQUEST event is raised to handle a Basic Authentication request from

the server when the AUTHENTICATIONMODE property is set to "Custom". At this point

the handler should respond to the request by using the AUTHENTICATE method to

return the credentials or set the cancel flag (so that the authentication fails).

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_10

add_BasicAuthenticationRequested method on the Microsoft website.

Example

 Function WEBAUTHREQUEST(CtrlEntID, CtrlClassID, URI, Challenge)

 // Example: A WEBAUTHREQUEST handler that uses a dialog box to ask the user
 // for the credentials for the passed URL. The AUTHENTICATE method is
 // executed to return an answer to the server.

 // Assume we have a dialog box called GET_WEB_CREDENTIALS that takes
 // the passed URI and Challenge string returned from the server.

 DlgParams = URL : @fm : Challenge
 Credentials = Dialog_Box("GET_WEB_CREDENTIALS", @Window, DlgParams)

 If BLen(Credentials) Then
 // Assume the dialog passed back the UserName and Password as
 // an @fm-delimited array

 UN = Credentials<1>
 PW = Credentials<2>

 Call Exec_Method(CtrlEntID, "AUTHENTICATE", UN, PW, FALSE$)

 End Else
 // User Cancelled - stop the request
 Call Exec_Method(CtrlEntID, "AUTHENTICATE", "", "", TRUE$)
 End

 Return FALSE$

See Also

WEBVIEW AUTHENTICATIONMODE property, WEBVIEW WEBAUTHREQUEST event.

BACK method

Description

Navigates the WEBVIEW object to the previous page in the navigation history.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "BACK")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 GoBack method on the Microsoft

website.

Example

 // Example: Navigate to the previous page in the WEBVIEW object's
 // navigation history

 If Get_Property(CtrlEntID, "CANGOBACK") Then
 Call Exec_Method(CtrlEntID, "BACK")
 End

See Also

WEBVIEW CANGOBACK property, WEBVIEW CANGOFORWARD property, WEBVIEW

HISTORY property, WEBVIEW CLEARBROWSINGDATA method, WEBVIEW FORWARD

method, WEBVIEW WEBDATACLEARED event, WEBVIEW WEBHISTORYCHANGED

event.

CANCELCONTEXTMENU method

Description

Cancels a context menu request and releases any associated resources.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "CANCELCONTEXTMENU", MenuID)

Parameters

Name Required Description

MenuID Yes The ID of the context menu. This is the value passed in the

MenuID parameter of the WEBINITCONTEXTMENU and

WEBCONTEXTMENU events.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This method can only be used within the context of the WEBINITCONTEXTMENU and

WEBCONTEXTMENU events.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_11 add_ContextMenuRequested

method on the Microsoft website.

Example

See the WEBVIEW WEBCONTEXTMENU event for an example of using the

CANCELCONTEXTMENU method.

See Also

WEBVIEW WEBCONTEXTMENU event, WEBVIEW WEBINITCONTEXTMENU event.

CANCELDIALOG method

Description

Cancels a “show dialog” request and releases any associated resources.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "CANCELDIALOG", DialogID)

Parameters

Name Required Description

DialogID Yes A unique ID for the show dialog request. This is the value

passed in the DialogID parameter of the WEBSHOWDIALOG

event.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This method can only be used within the context of a WEBSHOWDIALOG event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_ScriptDialogOpening method

on the Microsoft website.

Example

See the WEBVIEW WEBSHOWDIALOG event for an example of using the

CANCELDIALOG method.

See Also

WEBVIEW CONFIRMDIALOG request, WEBVIEW WEBSHOWDIALOG event.

CANCELPERMISSIONREQUEST method

Description

Cancels and denies any pending permission request and releases any associated

resources.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "CANCELPERMISSIONREQUEST")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This method can only be used within the context of a WEBPERMISSIONREQUEST

event. Ideally permission requests should be handled by using the SETPERMISSION

method, but this method can be used to simply deny a request if desired. (It is used

in the system promoted WEBPERMISSIONREQUEST event handler as a “catch-all” to

ensure any resources are released).

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_PermissionRequested method

on the Microsoft website.

Example

 Function WEBPERMISSIONREQUEST(CtrlEntID, CtrlClassID, URI, RequestType, |
 UserInitiated)

 // Example: A WEBPERMISSIONREQUEST event handler that refuses permission for all
 // requests and prevents the system promoted event handler from executing.
 $Insert Logical

 Call Exec_Method(CtrlEntID, "CANCELPERMISSIONREQUEST")

Return FALSE$

See Also

WEBVIEW SETPERMISSION method, WEBVIEW WEBPERMISSIONREQUEST event.

CLEARBROWSINGDATA method

Description

Clears browsing data stored by the WEBVIEW object based on the type of data

and/or a date range.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "CLEARBROWSINGDATA", DataTypes, |

 dateTimeFrom, dateTimeFrom)

Parameters

Name Required Description

DataTypes Yes An @fm-delimited list of boolean flags representing the types

of data to clear, or “*” for all.

 <1> All Profile Data (same as "*")

 <2> All Site Data

 <3> All DOM Storage

 <4> File Systems

 <5> Indexed DB

 <6> Local Storage

 <7> Web SQL

 <8> Cache Storage

 <9> Cookies

 <10> Disk Cache

 <11> Download History

 <12> General AutoFill

 <13> Password AutoSave

 <14> Browsing History

 <15> Settings

Note that this array represents a hierarchy of types to clear –

see the Remarks section below for more details.

DateTimeFrom No Date from which data should be cleared (expressed in

internal Revelation DateTime (DT) format).

DateTimeTo No Date up to which data should be cleared (expressed in

internal Revelation DateTime (DT) format).

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW object raises a WEBDATACLEARED event to return the actual result of

the CLEARBROWSINGDATA method.

Calling this method also clears the data held by the HISTORY property if the

DataTypes argument includes the “Browsing History” type (field <14>).

Note that the DataTypes parameter represents a hierarchical structure like so:

 All Profile Data

 All Site Data

 All DOM Storage

 File Systems

 Indexed DB

 Local Storage

 Web SQL

 Cache Storage

 Cookies

 Disk Cache

 Download History

 General Autofill

 Password Autosave

 Browsing History

 Settings

E.g., if you specify “All DOM Storage” then you implicitly specify “File Systems”,

“Indexed DB”, “Local Storage”, “Web SQL” and “Cache Storage” as well, and so on.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2Profile

ClearBrowsingDataInTimeRange method on the Microsoft website.

Example

 // Example: Clear "All Browsing History" in the previous week
 $Insert PS_WebView_Equates

 DataTypes = ""
 DataTypes<WBV_CBD_POS_BROWSINGHISTORY$> = TRUE$

 DateFrom = (Date() - 7) : ".0" ; // DT format

 Call Exec_Method(CtrlEntID, "CLEARBROWSINGDATA", DataTypes, DateFrom, "")

 // Example: Clear "All Site Data" and "Download History".
 //
 // Because we have selected "All Site Data" this will also clear:
 //
 // 1) All DOM Storage (File Systems, Indexed Local Storage, Web SQL and
 // Cache Storage)
 // 2) Cookies
 //

 DataTypes = ""
 DataTypes<WBV_CBD_POS_ALLSITEDATA$> = TRUE$

 Call Exec_Method(CtrlEntID, "CLEARBROWSINGDATA", DataTypes, "", "")

See Also

WEBVIEW CANGOBACK property, WEBVIEW CANGOFORWARD property, WEBVIEW

HISTORY property, WEBVIEW BACK method, WEBVIEW FORWARD method, WEBVIEW

WEBDATACLEARED event.

CONFIRMDIALOG method

Description

Notifies the WEBVIEW object that the “show dialog” request was processed and

optionally returns a value for a “prompt” type dialog.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "CONFIRMDIALOG", DialogID, ResponseText)

Parameters

Name Required Description

DialogID Yes A unique ID for the show dialog request. This is the value

passed in the DialogID parameter of the WEBSHOWDIALOG

event.

ResponseText No The value the user entered for a “prompt” type dialog. Only

for use with the latter type.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This method can only be used within the context of a WEBSHOWDIALOG event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_ScriptDialogOpening method

on the Microsoft website.

Example

See the WEBVIEW WEBSHOWDIALOG event for an example of using the

CONFIRMDIALOG method.

See Also

WEBVIEW CANCELDIALOG request, WEBVIEW WEBSHOWDIALOG event.

COPY method

Description

Copies the current selection in the WEBVIEW object to the clipboard.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "COPY")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW COPY method uses the EXECUTESCRIPT method to call the underlying

JavaScript document.execCommand("copy") method.

For more information on the JavaScript document.execCommand method please

refer to the documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

Example

 // Example: Copy the current selection

 Call Exec_Method(CtrlEntID, "COPY")

See Also

WEBVIEW CUT method, WEBVIEW EXECUTESCRIPT method, WEBVIEW PASTE method,

WEBVIEW REDO method, WEBVIEW UNDO method.

https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

CUT method

Description

Removes the current selection from the WEBVIEW object and copies it to the

clipboard.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "CUT")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW CUT method uses the EXECUTESCRIPT method to call the underlying

JavaScript document.execCommand("cut") method.

For more information on the JavaScript document.execCommand method please

refer to the documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

Example

 // Example: Cut the current selection

 Call Exec_Method(CtrlEntID, "CUT")

See Also

WEBVIEW COPY method, WEBVIEW EXECUTESCRIPT method, WEBVIEW PASTE

method, WEBVIEW REDO method, WEBVIEW UNDO method.

https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

DELETECOOKIES method

Description

This method deletes one or more cookies from the WEBVIEW object, based on a

combination of the name URI, domain, and path.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "DELETECOOKIES", |

 Name, |

 URI, |

 Domain, |

 Path)

Parameters

Name Required Description

Name Yes The name of the cookie to delete, or “*” to specify all cookies.

URI No If passed only cookies matching this name are deleted and the

domain and path arguments are ignored.

Domain No If passed only cookies matching this domain are deleted.

Path No If passed only cookies matching this path are deleted.

Returns

"1" (TRUE$) if the method was executed successfully, "0" (FALSE$) otherwise.

Remarks

Note that this method could affect other WEBVIEW objects that are using the same

UDF (User Data Folder) and profile name.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2CookieManager DeleteAllCookies,

DeleteCookies, and DeleteCookiesWithDomainAndPath methods on the Microsoft

website.

Example

 // Example: Delete all cookies from "www.revelation.com"

 Call Exec_Method(CtrlEntID, "DELETECOOKIES", "*", "", "revelation.com", "")

See Also

WEBVIEW USERDATAFOLDER property, WEVIEW PROFILENAME property, WEBVIEW

GETCOOKIES method, WEBVIEW SETCOOKIE method.

DENYOPENWINDOW method

Description

This method should be called when handling a WEBOPENWINDOW event to prevent

the WEBVIEW object from opening a new default WebView2 window.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "DENYOPENWINDOW", |

 OpenID)

Parameters

Name Required Description

OpenID Yes ID of the “open window” request as passed from the

WEBOPENWINDOW event.

Returns

"1" (TRUE$) if the method was executed successfully, "0" (FALSE$) otherwise.

Remarks

When the content inside the WEBVIEW object requests to open a new window (e.g.

via the JavaScript “window.open” method) then a WEBOPENWINDOW event is

raised. In this event the DENYOPENWINDOW method may be called to prevent the

new window from being opened.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_NewWindowRequested

method on the Microsoft website.

Example

 Function WEBOPENWINDOW(CtrlEntID, CtrlClassID, OpenID, URI, WindowInfo, |
 UserInitiated)

 // Example: A WEBOPENWINDOW handler that prevents a new window from opening
 // from the "example.com" domain (not a rigorous test!)

 If IndexC(URI, "example.com", 1) then
 Call Exec_Method(CtrlEntID, "DENYOPENWINDOW", OpenID)
 End

 Return FALSE$

See Also

WEBVIEW ALLOWOPENWINDOW method, WEBVIEW WEBOPENWINDOW event.

EXECUTECDPMETHOD method

Description

Executes a specified Chrome DevTools Protocol (CDP) method for the WEBVIEW

object (The Chrome DevTools Protocol allows for tools to instrument, inspect, debug

and profile Chromium, Chrome and other Blink-based browsers).

CDP methods are always executed asynchronously.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", MethodName, |

 MethodParams, IgnoreResult)

Parameters

Name Required Description

MethodName Yes Name of the CDP method to execute in the format:

 {domain}.{method}

This is case-sensitive.

MethodParams No JSON-encoded parameter to pass to the CDP method.

Defaults to null.

IgnoreResult No If TRUE$ then a WEBCDPMETHODRESULT event is not raised to

return the results of the method call. Defaults to FALSE$.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The actual results of the method call are returned via a WEBCDPMETHODRESULT

event. Note that even though WebView2 dispatches the CDP messages in the order

called, CDP method calls may be processed out of order. If you require CDP

methods to run in a particular order, you should wait for the previous method's

completed handler to run before calling the next method.

More information on the CDP can be found on here along with the methods that

are supported:

 https://chromedevtools.github.io/devtools-protocol/

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 CallDevToolsProtocolMethod

method on the Microsoft website.

Example

 // Example: Execute the "Browser.getVersion" CDP method to get the
 // browser version information. This method takes no parameters.
 //
 // The version information is returned via the WEBCDPMETHODRESULT
 // event.

 Call Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", |
 "Browser.getVersion", "", FALSE$)

 // Example: Execute the "DOM.getDocument" CDP method to get the
 // root DOM node and the subtree
 //
 // The DOM node is returned via the WEBCDPMETHODRESULT
 // event.

 // To get the entire subtree we need to pass a "depth" parameter
 // with an integer value of -1, encoded as a JSON object.
 JsonParam = '{ "depth" : -1 }'

 Call Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", |
 "DOM.getDocument", JsonParam, FALSE$)

See Also

WEBVIEW ADDCDPEVENT method, WEBVIEW REMOVECDPEVENT property, WEBVIEW

WEBCDPEVENT event, WEBVIEW WEBCDPMETHODRESULT event.

EXECUTESCRIPT method

Description

Executes the specified JavaScript in the context of the top-level document of the

WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "EXECUTESCRIPT", |

 Script, |

 IgnoreResult, |

 SyncMode, |

 SyncTimeout)

Parameters

Name Required Description

Script Yes A string containing the JavaScript to execute.

IgnoreResult No When TRUE$ the script is executed asynchronously and no

WEBSCRIPTRESULT event is raised. Defaults to FALSE$.

(This parameter overrides SyncMode – i.e. if IgnoreResult is

TRUE$ then SyncMode is forced to FALSE$).

SyncMode No When TRUE$ the script is executed in synchronous mode, i.e.

the result of the script is returned directly from the

Exec_Method call.

When set to FALSE$ (the default) The result of the script Is

returned via the WEBSCRIPTRESULT event.

SyncTimeout No If the SyncMode parameter is TRUE$ then this parameter

specifies the time in milliseconds to wait for an answer.

Defaults to 10000ms (10 seconds).

Returns

If SyncMode is FALSE$ then this method returns "1" (TRUE$) if executed successfully, "0"

(FALSE$) otherwise. If SyncMode is TRUE$ then the result of the executed script is

returned. If SyncMode is TRUE$ and the script times out then null is returned.

Remarks

As stated previously the WEBVIEW object is designed to be run in an asynchronous

fashion and running the EXECUTESCRIPT method in the default asynchronous mode is

always the preferred solution (i.e., SyncMode is FALSE$).

However, OpenInsight provides a synchronous solution (when SyncMode is set to

TRUE$) which essentially waits in a timed loop for the answer to be returned via the

WEBSYNCSCRIPTRESULT event and passed back to the caller. This can be used for

small fast requests – anything lengthy should be processed asynchronously.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 ExecuteScript method on the

Microsoft website.

Example

 $Insert Logical

 // Example: Set the document title using JavaScript, ignoring any result

 Script = "document.title = 'New Title';"
 Call Exec_Method(CtrlEntID, "EXECUTESCRIPT", Script, TRUE$)

 // Example: Get the document title using a synchronous EXECUTESCRIPT
 // call

 Script = "document.title"
 DocTitle = Exec_Method(CtrlEntID, |
 "EXECUTESCRIPT", |
 Script, |
 FALSE$, |
 TRUE$)

 // Example: Get the contents of the document body using an asynchronous
 // EXECUTESCRIPT call. The results of the script will be returned via
 // the WEBSCRIPTRESULT event.

 Script = "document.body.innerHTML"
 Call Exec_Method(CtrlEntID, "EXECUTESCRIPT", Script, FALSE$)

See Also

WEBVIEW POSTJSONMESSAGE method, WEBVIEW POSTTEXTMESSAGE method,

WEBVIEW WEBSCRIPTRESULT event, WEBVIEW WEBSYNCSCRIPTRESULT event.

FORWARD method

Description

Navigates the WEBVIEW object to the next page in the navigation history.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "FORWARD")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 GoForward method on the Microsoft

website.

Example

 // Example: Navigate to the next page in the WEBVIEW object's
 // navigation history

 If Get_Property(CtrlEntID, "CANGOFORWARD") Then
 Call Exec_Method(CtrlEntID, "FORWARD")
 End

See Also

WEBVIEW CANGOBACK property, WEBVIEW CANGOFORWARD property, WEBVIEW

HISTORY property, WEBVIEW BACK method, WEBVIEW CLEARBROWSINGDATA

method, WEBVIEW WEBDATACLEARED event, WEBVIEW WEBHISTORYCHANGED

event.

GETCOOKIES method

Description

This method returns an array of cookies from the WEBVIEW object that match a

specified URI.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "GETCOOKIES", URI)

Parameters

Name Required Description

URI Yes Specifies the URI to use for matching the cookies. If "*" then all

cookies under the same profile are returned.

Returns

Returns an @fm-delimited array of matching cookies. Each cookie has the following

@vm-delimited structure:

 <0,1> Name

 <0,2> Value

 <0,3> Domain

 <0,4> Path

 <0,5> Expires (Internal DT format)

 <0,6> Secure (TRUE$/FALSE$)

 <0,7> HTTPOnly (TRUE$/FALSE$)

 <0,8> SameSite ("None","Lax","Strict")

 <0,9> SessionOnly (TRUE$/FALSE$)

Remarks

Equates for use with the GETCOOKIES method can be found in the

PS_WEBVIEW_EQUATES insert record.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2CookieManager GetCookies method

on the Microsoft website.

Example

 // Example: Get all cookies from the Revelation web site

 RevURI = "https://www.revelation.com"
 RevCookies = Exec_Method(CtrlEntID, "GETCOOKIES", RevURI)

See Also

WEBVIEW DELETECOOKIES method, WEBVIEW SETCOOKIE method.

MAPHOSTNAMETOFOLDER method

Description

This method creates a mapping between a virtual host name and a local folder

path to make content in that folder available to via that host name.

Due to security issues, the WEBVIEW object may refuse to load local content such as

images using the “file//” protocol. In this case it is possible to map the folder

containing the local content to a “virtual host name”, and then refer to the content

using that hostname and the normal “http://” or https:// protocol instead.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "MAPHOSTNAMETOFOLDER", HostName, |

 FolderPath, AccessType)

Parameters

Name Required Description

HostName Yes Specifies the virtual host name to set. After setting the

mapping, documents loaded in the WEBVIEW object can use

HTTP or HTTPS URLs at the specified host name to access files in

the local folder specified by the FolderPath parameter.

FolderPath Yes Specifies the local folder path to map to. Both absolute and

relative paths are supported for folderPath. Relative paths are

interpreted as relative to the folder where OpenInsight.exe is

located.

This parameter must not exceed the Windows MAX_PATH limit

(260 characters).

AccessType Yes Specifies the level of access to resources under the virtual host

from other sites. Can be one of the following values:

 0 : Deny

 1 : Allow

 2 : DenyCORS

Specify the minimal cross-origin access necessary to run the

app. If there is not a need to access local resources from other

origins, use “0” (Deny).

Cross-origin resource access types are documented on the

Microsoft website under the topic:

 “CoreWebView2HostResourceAccessKind”

Returns

Returns "1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

Equates for use with the AccessType parameter can be found in the

PS_WEBVIEW_EQUATES insert record.

For more information on this topic please refer to the Windows WebView2

documentation regarding the following topics on the Microsoft website:

• ICoreWebView2_3 SetVirtualHostNameToFolderMapping method

• CoreWebView2HostResourceAccessKind Enum

Example

 // Example: Map the "c:\web-images" folder to the virtual host
 // "myAppImages" so it can be used with the https
 // protocol

 $Insert PS_WebView_Equates

 HostName = "myAppImages"
 LocalFolder = "c:\web-images"
 AccessType = WBV_MH2F_ACCESS_TYPE_DENY$

 SuccessFlag = Exec_Method(CtrlEntID, "MAPHOSTTOFOLDERNAME", |
 HostName, LocalFolder, AccessType)

See Also

WEBVIEW UNMAPHOSTNAME method.

NAVIGATE method

Description

Navigates the top-level document in the WEBVIEW object to the specified URI.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "NAVIGATE", URI, Method, Headers, |

 Content)

Parameters

Name Required Description

URI Yes The location to navigate to.

Method No HTTP method to use (GET,POST,DELETE etc). Defaults to GET.

Headers No A list of HTTP headers to send to the server in the usual format:

 <headerName> "=" <headerValue>

Each header should be delimited with CRLF.

Content No If making a HTTP POST request this parameter contains the data

to send to the server.

Returns

Returns "1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

Navigation is always an asynchronous operation, and it triggers a series of events in

the WEBVIEW object as the content is loaded:

• WEBNAVIGATING

• WEBSOURCECHANGED

• WEBCONTENTLOADING

• WEBHISTORYCHANGED

• WEBCONTENTLOADED

• WEBNAVIGATED

(The diagram below shows the sequence in which these events are fired).

Each navigation attempt is assigned a unique ID that can be used to track its

progress. This ID is passed to the beginning WEBNAVIGATING event and can be

used from that point onwards.

For more information on WEBVIEW navigation please refer to the Windows

WebView2 documentation on the Microsoft website regarding the following topics:

• ICoreWebView2 Navigate method.

• ICoreWebView2 NavigateWithWebResourceRequest method

Example

 // Example: Navigate to a web site

 SuccessFlag = Exec_Method(CtrlEntID, "NAVIGATE", "https://www.revelation.com")

 // Example: Send data to a web-server using the POST method

 $Insert RTI_Text_Equates

 URI = "https://www.example.com/cgi-bin/oecgi.exe/set_name"

 Content = "FNAME=John&SNAME=Doe"

 Headers = "Content-Type=application/x-www-form-urlencoded"
 Headers := CRLF$: "Content-Length=" : bLen(Content)
 Headers := CRLF$: "Content-Language=en-US"
 Headers := CRLF$: "Charset=utf-8"

 // etc...

 SuccessFlag = Exec_Method(CtrlEntID, "NAVIGATE", URI, "POST", Headers, Content)

See Also

WEBVIEW URI property, WEBVIEW RELOAD method, WEBVIEW SETHTML method,

WEBVIEW STOP method, WEBVIEW WEBNAVIGATING event, WEBVIEW

WEBRESOURCECHANGED event, WEBVIEW WEBCONTENTLOADING event, WEBVIEW

WEBHISTORYCHANGED event, WEBVIEW WEBCONTENTLOADED event, WEBVIEW

WEBNAVIGATED event.

OPENBROWSERTASKMANAGER method

Description

Opens the browser task manager window for the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "OPENBROWSERTASKMANAGER")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_6 OpenTaskManagerWindow

method on the Microsoft website.

Example

 // Example: Open the Browser Task Manage window

 Call Exec_Method(CtrlEntID, "OPENBROWSERTASKMANAGER")

See Also

N/a.

OPENDEVTOOLS method

Description

Opens the DevTools window for the current document in the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "OPENDEVTOOLS")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 OpenDevToolsWindow method on

the Microsoft website.

Example

 // Example: Open the DevTools window

 Call Exec_Method(CtrlEntID, "OPENDEVTOOLS")

See Also

N/a.

PASTE method

Description

Pastes the clipboard contents at the insertion point (replaces current selection) in

the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "PASTE")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW PASTE method uses the EXECUTESCRIPT method to call the underlying

JavaScript document.execCommand("paste") method.

For more information on the JavaScript document.execCommand method please

refer to the documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

Example

 // Example: Paste the current selection

 Call Exec_Method(CtrlEntID, "PASTE")

See Also

WEBVIEW COPY method, WEBVIEW CUT method, WEBVIEW EXECUTESCRIPT method,

WEBVIEW REDO method, WEBVIEW UNDO method.

https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

POSTJSONMESSAGE method

Description

Posts a JSON-formatted WebMessage to the top-level document in the WEBVIEW

object.

The main document receives the message by subscribing to the message event of

the window.chrome.webview JavaScript object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "POSTJSONMESSAGE", JsonMessage)

Parameters

Name Required Description

JsonMessage Yes A string containing a JSON formatted message.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The EnableWebMessages field in the WEBVIEW SETTINGS property must be set to

TRUE$ for this method to work.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 PostWebMessageAsJson method on

the Microsoft website.

Example

 // Example JavaScript for the HTML document to listen for the
 // "message" event on the "window.chrome.webview" object.
 //
 // When we get the message we examine the passed event object's
 // data looking for an object called "msgText". When we find
 // it we use a simple alert() message to display the text.

 // This should be placed in the HTML document...
 <script>

 window.chrome.webview.addEventListener("message", objEvent => {
 alert(objEvent.data.msgText);
 });

 </script>

 // Example: Post a message to the document using a JSON formatted object

 JsonMessage = '{ "msgText" : "Test Message from OI" }'

 Call Exec_Method(CtrlEntID, "POSTJSONMESSAGE", JsonMessage)

 // "Test Message from OI" will now be shown in an alert message
 // in the WEBVIEW object.

See Also

WEBVIEW SETTINGS property, WEBVIEW EXECUTESCRIPT method, WEBVIEW

POSTTEXTMESSAGE method, WEBVIEW WEBMESSAGE event.

POSTTEXTMESSAGE method

Description

Posts a text WebMessage to the top-level document in the WEBVIEW object.

The main document receives the message by subscribing to the message event of

the window.chrome.webview JavaScript object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "POSTTEXTMESSAGE", TextMessage)

Parameters

Name Required Description

TextMessage Yes A string containing the message.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The EnableWebMessages field in the WEBVIEW SETTINGS property must be set to

TRUE$ for this method to work.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 PostWebMessageAsString method

on the Microsoft website.

Example

 // Example JavaScript for the HTML document to listen for the
 // "message" event on the "window.chrome.webview" object.
 //
 // When we get the message we examine the passed event object's
 // data property and use a simple alert() message to display it.

 // This should be placed in the HTML document...
 <script>

 window.chrome.webview.addEventListener("message", objEvent => {
 alert(objEvent.data);
 });

 </script>

 // Example: Post a message to the document using a a simple text string

 Call Exec_Method(CtrlEntID, "POSTTEXTMESSAGE", "Test Message from OI")

 // "Test Message from OI" will now be shown in an alert message
 // in the WEBVIEW object.

See Also

WEBVIEW SETTINGS property, WEBVIEW EXECUTESCRIPT method, WEBVIEW

POSTTEXTMESSAGE method, WEBVIEW WEBMESSAGE event.

PRINT method

Description

Opens a dialog box to print the current document in the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "PRINT")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW PRINT method uses the EXECUTESCRIPT method to call the underlying

JavaScript window.print()method to print the document.

For more information on the JavaScript window.print()method please refer to the

documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Window/print

Example

 // Example: Print the current document

 Call Exec_Method(CtrlEntID, "PRINT")

See Also

WEBVIEW EXECUTESCRIPT method, WEBVIEW PRINTTOPDF method.

PRINTTOPDF method

Description

Print the current page to PDF asynchronously with the provided settings.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "PRINTTOPDF", |

 FileName, |

 PrintSettings)

Parameters

Name Required Description

FileName Yes Specifies the absolute name and path of the PDF file to write

to. If the path points to an existing file, the file will be

overwritten.

PrintSettings No Specifies an @fm-delimited array of settings to use when

printing the PDF:

 <1> PrintHeaderAndFooter

 <2> PrintSelectedOnly

 <3> PrintBackgrounds

 <4> HeaderTitle

 <5> FooterURI

 <6> Landscape

 <7> PageWidth

 <8> PageHeight

 <9> LeftMargin

 <10> TopMargin

 <11> RightMargin

 <12> BottomMargin

 <13> ScaleFactor

See “Remarks” below for more details on these settings.

Returns

"1" (TRUE$) if the script was added successfully, "0" (FALSE$) otherwise.

Remarks

As this is an asynchronous operation the results are returned via the WEBPDFPRINTED

event.

The PrintSettings parameter has the following options:

Name Description

PrinterHeaderAndFooter If TRUE$ then print the header and footer. The header

consists of the date and time of printing, and the title of

the page. The footer consists of the URI and page number.

The height of the header and footer is 0.5 cm, or ~0.2

inches. Defaults to FALSE$.

PrintSelectedOnly If TRUE$ then only the current selection of HTML in the

document is printed. Defaults to FALSE$.

PrintBackgrounds If TRUE$ then background colors and images are printed.

Defaults to FALSE$.

HeaderTitle Specifies the text for the title to put in the document

header. Use the string "<no-title>" to prevent a title from

being printed. Defaults to the document title.

FooterURI Specifies the text for the URI to put in the document footer.

Use the string "<no-uri>" to prevent a URI from being

printed. Defaults to the document URI.

Landscape If TRUE$ then print the document using Landscape

orientation. Defaults to FALSE$.

PageWidth Specifies the width of the page in inches. Must be greater

than 0. Defaults to 8.5 inches.

PageHeight Specifies the height of the page in inches. Must be

greater than 0. Defaults to 11 inches.

LeftMargin Specifies the width of the left margin in inches. The default

is 0.4 inches (1 cm).

TopMargin Specifies the height of the top margin in inches. The

default is 0.4 inches (1 cm).

RightMargin Specifies the width of the right margin in inches. The

default is 0.4 inches (1 cm).

BottomMargin Specifies the height of the bottom margin in inches. The

default is 0.4 inches (1 cm).

ScaleFactor Specifies the scaling applied to the document when

printing. This is a numeric value between 0.1 (10%) and 2.0

(200%). Defaults to 1.0.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_7 PrintToPdf method, and the

ICoreWebView2PrintSettings interface on the Microsoft website.

Example

 // Example: Ask the user for an PDF file name and save
 // the contents of the WEBVIEW object to it.

 $Insert PS_ChooseFile_Equates
 $Insert PS_FileSystem_Equates
 $Insert PS_WebView_Equates
 $Insert Logical

 Equ INVALID_CHARS$ to '*."/\[]:;|,'
 Equ WEBVIEW_CTRL$ to @Window : ".WBV_BROWSER"

 // Show PDF and All Files ...
 Filter = "PDF Files(*.pdf)/*.pdf/"
 Filter := "All Files (*.*)/*.*/"

 Flags = 0;
 Flags = BitOr(Flags, OFN_NOCHANGEDIR$)
 Flags = BitOr(Flags, OFN_PATHMUSTEXIST$)
 Flags = BitOr(Flags, OFN_OVERWRITEPROMPT$)

 DfltName = Get_Property(WEBVIEW_CTRL$, "DOCUMENTTITLE")

 Spaces = Space(Len(INVALID_CHARS$))
 Convert INVALID_CHARS$ To Spaces In DfltName

 // Default to "My Documents"
 StartDir = Exec_Method("FILESYSYEM", "GETSPECIALDIR", |
 PS_GSD_PERSONAL$)

 CFOpt = ""
 CFOpt<CHFILE_POS_MODE$> = CHFILE_MODE_SAVEAS$
 CFOpt<CHFILE_POS_FILTERSTRING$> = Filter
 CFOpt<CHFILE_POS_FILTERINDEX$> = 1
 CFOpt<CHFILE_POS_DFLTNAME$> = DfltName : ".pdf"
 CFOpt<CHFILE_POS_FLAGS$> = Flags
 CFOpt<CHFILE_POS_INITDIR$> = StartDir
 CFOpt<CHFILE_POS_TITLE$> = "Print WebPage As"

 PdfName = Exec_Method("SYSTEM", "CHOOSEFILE", @Window, CFOpt)
 If BLen(PDFName) Then

 PrintSettings = ""
 PrintSettings<WBV_P2PDFSET_POS_HDRANDFTR$> = TRUE$
 PrintSettings<WBV_P2PDFSET_POS_FTRURI$> = WBV_P2PDFSET_NO_FTRURI$

 IsOK = Exec_Method(WEBVIEW_CTRL$, "PRINTTOPDF", PDFName, |
 PrintSettings)
 If IsOK Then
 // Use the WEBPDFPRINTED event to see if the print
 // operation was successful.
 End
 End

See Also

WEBVIEW PRINT method, WEBVIEW WEBPDFPRINTED event.

REDO method

Description

Discards the results of the last Undo command performed on the content in the

WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "REDO")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW REDO method uses the EXECUTESCRIPT method to call the underlying

JavaScript document.execCommand("redo") method.

For more information on the JavaScript document.execCommand method please

refer to the documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

Example

 // Example: Perform a Redo operation on the current item in the WEBVIEW control

 Call Exec_Method(CtrlEntID, "REDO")

See Also

WEBVIEW COPY method, WEBVIEW CUT method, WEBVIEW EXECUTESCRIPT method,

WEBVIEW PASTE method, WEBVIEW UNDO method.

https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

RELOAD method

Description

Reloads the current top-level document in the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "RELOAD")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This is similar to navigating to the URI of the current top level document including all

navigation events firing and respecting any entries in the HTTP cache. However, the

back and forward history is not modified.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 Reload method on the Microsoft

website.

Example

 // Example: Reload the document in the WEBVIEW object

 Call Exec_Method(CtrlEntID, "RELOAD")

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method.

REMOVECDPEVENT method

Description

Stops the WEBVIEW object from receiving notifications for a specified Chrome

DevTools Protocol (CDP) event. The Chrome DevTools Protocol allows for tools to

instrument, inspect, debug and profile Chromium, Chrome and other Blink-based

browsers.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, |

 "REMOVECDPEVENT", |

 EventName)

Parameters

Name Required Description

EventName Yes Specifies the name of the CDP event to stop listening for. This is

case-sensitive.

Returns

"1" (TRUE$) if the event was removed successfully, "0" (FALSE$) otherwise.

Remarks

More information on the CDP can be found on here along with the events that are

supported:

 https://chromedevtools.github.io/devtools-protocol/

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 GetDevToolsProtocolEventReceiver

method on the Microsoft website.

Example

 // Example: Stop listening for the "Log.entryAdded" CDP event

 IsOk = Exec_Method(CtrlEntID, "REMOVECDPEVENT", "Log.entryAdded")

See Also

WEBVIEW EXECUTECDPMETHOD method, WEBVIEW ADDCDPEVENT method,

WEBVIEW WEBCDPEVENT event, WEBVIEW WEBCDPMETHODRESULT event.

REMOVEINITSCRIPT method

Description

Removes the specified JavaScript previously added to the WEBVIEW object with the

ADDINTISCRIPT method.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "REMOVEINITSCRIPT", ScriptID)

Parameters

Name Required Description

ScriptID Yes Specifies the ID of JavaScript to remove. This ID was returned

via the WEBINITSCRIPTADDED event.

Returns

"1" (TRUE$) if the script was removed successfully, "0" (FALSE$) otherwise.

Remarks

The script is added asynchronously by the ADDINITSCRIPT method and given a

unique identifier. The actual result of the method and the identifier are returned in

the WEBINITSCRIPTADDED event. The identifier may be saved for later use with the

REMOVEINITSCRIPT method.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2

RemoveScriptToExecuteOnDocumentCreated method on the Microsoft website.

Example

 // Example: Remove a script added earlier with the ADDINITSCRIPT method.

 IsOK = Exec_Method(CtrlEntID, "REMOVEINITSCRIPT", ScriptID)

See Also

WEBVIEW ADDINITSCRIPT method, WEBVIEW WEBINITSCRIPTADDED event.

RESUME method

Description

Resumes a suspended WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "RESUME")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

Note that when a suspended hidden WEBVIEW object is made visible again the

browser renderer is automatically resumed – there is no need to explicitly call the

RESUME method.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_3 Resume method on the Microsoft

website.

Example

 // Resume a suspended WEBVIEW object

 If Get_Property(CtrlEntID, "SUSPENDED") Then
 Call Exec_Method(CtrlEntID, "RESUME")
 End

See Also

WEBVIEW SUSPENDED property, WEBVIEW SUSPEND method, WEBVIEW SUSPENDED

event.

SAVETOFILE method

Description

Saves the contents of the specified WEBVIEW control to disk using the MHTML format.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SAVETOFILE", FileName)

Parameters

Name Required Description

FileName Yes Name and path to save the file as. The file will be saved in the

MHTML format.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This method is executed asynchronously and the actual result of the save operation

is returned in the WEBSAVEDTOFILE event.

For more information on this topic please refer to the “Page.captureSnapshot”

method in the Chrome DevTools Protocol website here:

https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-captureSnapshot

https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-captureSnapshot

Example

 // Example: Ask the user for an MHTML file name and save
 // the contents of the WEBVIEW object to it.

 $Insert PS_ChooseFile_Equates
 $Insert PS_FileSystem_Equates

 Equ INVALID_CHARS$ to '*."/\[]:;|,'
 Equ WEBVIEW_CTRL$ to @Window : ".WBV_BROWSER"

 // Show MHTML and All Files ...
 Filter = "MIME HTML Files(*.mhtml)/*.mhtml/"
 Filter := "All Files (*.*)/*.*/"

 Flags = 0;
 Flags = BitOr(Flags, OFN_NOCHANGEDIR$)
 Flags = BitOr(Flags, OFN_PATHMUSTEXIST$)
 Flags = BitOr(Flags, OFN_OVERWRITEPROMPT$)

 DfltName = Get_Property(WEBVIEW_CTRL$, "DOCUMENTTITLE")

 Spaces = Space(Len(INVALID_CHARS$))
 Convert INVALID_CHARS$ To Spaces In DfltName

 // Default to "My Documents"
 StartDir = Exec_Method("FILESYSYEM", "GETSPECIALDIR", |
 PS_GSD_PERSONAL$)

 CFOpt = ""
 CFOpt<CHFILE_POS_MODE$> = CHFILE_MODE_SAVEAS$
 CFOpt<CHFILE_POS_FILTERSTRING$> = Filter
 CFOpt<CHFILE_POS_FILTERINDEX$> = 1
 CFOpt<CHFILE_POS_DFLTNAME$> = DfltName : ".mhtml"
 CFOpt<CHFILE_POS_FLAGS$> = Flags
 CFOpt<CHFILE_POS_INITDIR$> = StartDir
 CFOpt<CHFILE_POS_TITLE$> = "Save WebPage As"

 SaveName = Exec_Method("SYSTEM", "CHOOSEFILE", @Window, CFOpt)
 If BLen(SaveName) Then

 If Exec_Method(WEBVIEW_CTRL$, "SAVETOFILE", SaveName) Then
 // Use the WEBSAVEDTOFILE event to see if the save
 // operation was successful.
 End
 End

See Also

WEBVIEW WEBSAVEDTOFILE event.

SELECTALL method

Description

Selects all the content of the editable region of the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SELECTALL")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW SELECTALL method uses the EXECUTESCRIPT method to call the

underlying JavaScript document.execCommand("selectAll") method.

For more information on the JavaScript document.execCommand method please

refer to the documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

Example

 // Example: Select all of the text

 Call Exec_Method(CtrlEntID, "SELECTALL")

See Also

WEBVIEW COPY method, WEBVIEW CUT method, WEBVIEW EXECUTESCRIPT method,

WEBVIEW PASTE method.

https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

SETCOOKIE method

Description

Adds or updates a cookie in the WEBVIEW object with the specified cookie details.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SETCOOKIE", Cookie)

Parameters

Name Required Description

Cookie Yes Cookie details to set. This is an @vm-delimited array with the

following structure:

 <0,1> Name (Required)

 <0,2> Value

 <0,3> Domain (Required)

 <0,4> Path

 <0,5> Expires (Internal DT format)

 <0,6> Secure (TRUE$/FALSE$)

 <0,7> HTTPOnly (TRUE$,FALSE$)

 <0,8> SameSite ("None","Lax", or "Strict"

- Defaults to "Lax")

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

Cookies are session cookies and will not be persistent if Expires is set to -1.0 (Any

negative value set other than -1.0 is treated as -1.0).

Cookies may also be set via the RequestHeaders parameter in the WEBVIEW

NAVIGATE method.

Equates for use with the SETCOOKIE method can be found in the

PS_WEBVIEW_EQUATES insert record.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2CookieManager CreateCookie and

AddOrUpdateCookie methods, and the ICoreWebView2Cookie interface on the

Microsoft website.

Information on cookies and the Set-Cookie HTTP header can be found on the Mozilla

developer site at:

 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Example

 // Example set a secure cookie for the Examples.Com domain
 $Insert PS_WebView_Equates

 equ ONE_DAY_SECS$ to 84600

 Cookie = ""
 Cookie<WBV_COOKIE_POS_NAME$> = "UserID"
 Cookie<WBV_COOKIE_POS_VALUE$> = "AgentC"
 Cookie<WBV_COOKIE_POS_DOMAIN$> = "example.com"

 // Expires 24 hours from now
 Expires = (Date() + 1) + (Time() / ONE_DAY_SECS$)
 Cookie<WBV_COOKIE_POS_EXPIRES$> = Expires

 Cookie<WBV_COOKIE_POS_SECURE$> = TRUE$

 IsOK = Exec_Method(CtrlEntID, "SETCOOKIE", Cookie)

See Also

WEBVIEW DELETECOOKIES method, WEBVIEW GETCOOKIES method, WEBVIEW

NAVIGATE method.

SETHTML method

Description

Loads a string containing HTML content into the WEBVIEW object as a top-level

document.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SETHTML", HTMLContent)

Parameters

Name Required Description

HTMLContent Yes Specifies the HTML string to load into the WEBVIEW object. This

parameter may not be larger than 2MB (2 * 1024 * 1024 bytes)

in total size. The origin of the new page is “about:blank”.

Returns

"1" (TRUE$) if the navigation was started successfully, "0" (FALSE$) otherwise.

Remarks

The normal sequence of navigation events fire when using this method. The URI

passed to the navigation events is a Base64-encoded representation of the

HTMLContent argument.

Note that the WEBVIEW object imposes stricter security measures on content loaded

via this method. For example, links in the content that represent “file://” URIs are not

allowed. A better way of loading local content is to use a HTTPSERVER control and

navigate to that instead.

For more information on this method please refer to the Windows WebView2

documentation regarding the ICoreWebView2 NavigateToString method on the

Microsoft website.

Example

 // Example: Read an html file from disk and load it into the
 // WBV_BROWSER WEBVIEW control

 OSRead HtmlFile From ".\html\customer_entry.html" Then

 Call Exec_Method(@Window : ".WBV_BROWSER", "SETHTML", HtmlFile)

 End

See Also

WEBVIEW NAVIGATE method.

SETPERMISSION method

Description

Allows or denies access to privileged resources from the content in the WEBVIEW

object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SETPERMISSION", URI, RequestType, |

 UserInitiated, AllowRequest)

Parameters

Name Required Description

URI Yes Specifies the source of the permission request.

RequestType Yes Specifies the type of resource that access was requested for.

Can be one of the following:

 0 : Unknown

 1 : Microphone

 2 : Camera

 3 : Geolocation

 4 : Notification

 5 : Other Sensor

 6 : Read Clipboard

UserInitiated Yes A boolean value that specifies if a user gesture initiated the

request.

AllowRequest Yes Set to TRUE$ to allow access to be granted to the requested

resourced, or FALSE$ to deny it.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

This method can only be used within the context of a WEBPERMISSIONREQUEST

event. The first three parameters passed to the method should match the same

parameters passed to the WEBPERMISSIONREQUEST.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_PermissionRequested method

on the Microsoft website.

Example

See the WEBPERMISSIONREQUEST event for an example of using the SETPERMISSION

method.

See Also

WEBVIEW SETPERMISSION method, WEBVIEW WEBPERMISSIONREQUEST event.

STOP method

Description

Stops all navigations and pending resource fetches (executing scripts are not

stopped however).

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "STOP")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 Stop method on the Microsoft

website.

Example

 // Example: Stop a navigating WEBVIEW object

 Call Exec_Method(CtrlEntID, "STOP")

See Also

WEBVIEW URI property, WEBVIEW RELOAD method, WEBVIEW NAVIGATE method,

WEBVIEW WEBNAVIGATING event.

SUSPEND method

Description

Suspends a WEBVIEW object, forcing it to consume less memory and resources, in

effect putting it to sleep. Can only be called if the WEBVIEW object is NOT visible.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SUSPEND")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

Suspending is similar to putting a tab to sleep in the Edge browser. Suspending

pauses script timers and animations, minimizes CPU usage for the associated browser

renderer process and allows the operating system to reuse the memory that was

used by the renderer process for other processes.

Note that this method is "best efforts" only - there may be cases where the WEBVIEW

object continues to run in the background. Use the WEBSUSPENDED event to listen

for the actual result of the SUSPEND call.

When a suspended hidden WEBVIEW object is made visible again the browser

renderer is automatically resumed – there is no need to explicitly call the RESUME

method.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_3 TrySuspend method on the

Microsoft website.

Example

 // Example: Hide the WEBVIEW object and then suspend it. When we
 // make the WEBVIEW visible again it will be automatically resumed.
 //
 // Note that hiding the WEBVIEW also hides the browser rendering
 // component (See the BROWSERVISIBLE property) so it may now be
 // suspended

 $Insert MSWin_ShowWindow_Equates

 Call Set_Property_Only(CtrlEntID, "VISIBLE", SW_HIDE$)

 Call Exec_Method(CtrlEntID, "SUSPEND")

 // We could listen for the success of the SUSPEND call via the
 // WEBSUSPENDED event if we wished

 ...

 // Showing the WEBVIEW object again automatically resumes it
 Call Set_Property_Only(CtrlEntID, "VISIBLE", SW_NORMAL$)

See Also

Common GUI VISIBLE property, WEBVIEW BROWSERVISIBLE property, WEBVIEW

SUSPENDED property, WEBVIEW RESUME method, WEBVIEW WEBSUSPENDED event.

UNDO method

Description

Undoes the last command performed on the content in the WEBVIEW object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "UNDO")

Parameters

N/a.

Returns

"1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

The WEBVIEW UNDO method uses the EXECUTESCRIPT method to call the underlying

JavaScript document.execCommand("undo") method.

For more information on the JavaScript document.execCommand method please

refer to the documentation on the Mozilla Developer website at:

 https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

Example

 // Example: Perform an Undo operation on the current item in the WEBVIEW object

 Call Exec_Method(CtrlEntID, "UNDO")

See Also

WEBVIEW COPY method, WEBVIEW CUT method, WEBVIEW EXECUTESCRIPT method,

WEBVIEW PASTE method, WEBVIEW REDO method.

https://developer.mozilla.org/en-US/docs/Web/API/Document/execCommand

UNMAPHOSTNAME method

Description

Clears a host name mapping for local folder that was added by the

MAPHOSTNAMETOFOLDER method.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "UNMAPHOSTNAME", HostName)

Parameters

Name Required Description

HostName Yes Specifies the virtual host name to remove.

Returns

Returns "1" (TRUE$) if the method was executed successfully, or "0" (FALSE$) otherwise.

Remarks

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_3

ClearVirtualHostNameToFolderMapping method on the Microsoft website.

Example

 // Example: Remove the “myAppImages” host name mapping

 SuccessFlag = Exec_Method(CtrlEntID, "UNMAPHOSTNAME", "myAppImages")

See Also

WEBVIEW MAPHOSTNAMETOFOLDER method.

WEBVIEW Events

The WEBVIEW object supports the following events:

Name Description

WEBAUDIOCHANGED Occurs when the “audio playing” status is changed.

WEBAUTHREQUEST Occurs when the WEBVIEW object encounters an

authentication request.

WEBCDPEVENT Occurs when the WEBVIEW object receives notification

that a tracked CDP event is fired.

WEBCDPMETHODRESULT Returns the results of a previous asynchronous call to

the EXECUTECDPMETHOD method.

WEBCLOSEWINDOW Occurs when content inside the WEBVIEW object

requests to close the window.

WEBCONTENTLOADED Occurs when the initial HTML document has been

parsed during navigation.

WEBCONTENTLOADING Occurs when the WEBVIEW object begins loading new

content.

WEBCONTEXTMENU Occurs when the WEBVIEW object wishes to display a

context menu.

WEBDATACLEARED Returns the results of CLEARBROWSINGDATA method.

WEBHISTORYCHANGED Occurs when a navigation updates the history of the

WEBVIEW object.

WEBINITCONTEXTMENU Occurs when the WEBVIEW object wishes to initialize a

context menu.

WEBINITSCRIPTADDED Returns the results of a call to the ADDINITSCRIPT

method.

WEBMESSAGE Occurs when the WEBVIEW object receives a

WebMessage from the hosted content.

WEBMUTEDCHANGED Occurs when the “audio muted” status is changed.

WEBNAVIGATED Occurs when the WEBVIEW object has completely

loaded.

WEBNAVIGATING Occurs when the WEBVIEW object is navigating to a

different URI.

WEBOPENWINDOW Occurs when the WEBVIEW object attempts to open a

new window.

WEBPDFPRINTED Returns the results of a previous call to the PRINTTOPDF

method.

WEBPERMISSIONREQUEST Occurs when the content in the WEBVIEW object

requests permission to access some privileged

resources.

WEBSAVEDTOFILE Returns the results of the SAVETOFILE method.

WEBSCRIPTRESULT Returns the results of an asynchronous EXECUTESCRIPT

method.

WEBSHOWDIALOG Occurs when a the WEBVIEW object needs to display

a custom dialog in response to a JavaScript dialog

statement.

WEBSOURCECHANGED Occurs when the WEBVIEW object’s source property

changes during navigation.

WEBSUSPENDED Occurs when the SUSPEND method is executed and

returns the results of the suspend operation.

WEBSTATUSTEXTCHANGED Occurs when the WEBVIEW object is showing a status

message, a URL, or an empty string.

WEBSYNCSCRIPTRESULT System-level event to support the EXECUTESCRIPT

method in synchronous mode.

WEBTITLECHANGED Occurs when the title of the top-level document in the

WEBVIEW object changes.

WEBVIEWCREATED Occurs when the WEBVIEW object has been created

and is ready to navigate.

WEBZOOMCHANGED Occurs when the user changes the Zoom Factor via

the mouse or keyboard.

The following Common GUI Object events are also supported:

• GOTFOCUS

• HELP

• LOSTFOCUS

• NOTES

• OMNIEVENT

• TIMER

• WINMSG

WEBAUDIOCHANGED event

Description

Occurs when the “audio playing” status is changed.

Syntax

 bForward = WEBAUDIOCHANGED(CtrlEntID, CtrlClassID, AudioPlaying)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

AudioPlaying Set to TRUE$ if the WEBVIEW object is playing audio (even if muted), or FALSE$

otherwise.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBAUDIOCHANGED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_8

add_IsDocumentPlayingAudioChanged method on the Microsoft website.

Example

 Function WEBAUDIOCHANGED(CtrlEntID, CtrlClassID, AudioPlaying)

 // Example: Display a message with the audio status

 If AudioPlaying Then
 MsgText = "Playing some tunes"
 End Else
 MsgText = "In Basic+, no one can hear you scream"
 End

 Call Msg(@Window, MsgRec)

 Return TRUE$

See Also

WEBVIEW AUDIOPLAYING property, WEBVIEW MUTED property, WEBVIEW

WEBMUTEDCHANGED event.

WEBAUTHREQUEST event

Description

Occurs when the WEBVIEW object encounters a Basic HTTP Authentication request

(as described in https://developer.mozilla.org/docs/Web/HTTP/Authentication), an

NTLM authentication or a Proxy Authentication request.

A WEBAUTHREQUEST event handler should provide a response via the AUTHENTICATE

method with the appropriate credentials or cancel the request.

Syntax

 bForward = WEBAUTHREQUEST(CtrlEntID, CtrlClassID, URI, Challenge)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

URI URI of the request that triggered the authentication request.

Challenge The authentication challenge string returned from the server.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

A WEBAUTHREQUEST event will only be triggered when the AUTHENTICATIONMODE

property is set to “Custom”. If it is set to “Default” the WEBVIEW object displays a

default authentication challenge dialog prompt to the user.

The WEBAUTHREQUEST event has a system-level promoted event handler that

performs the following tasks:

• Executes the WEBAUTHREQUEST quick event handler (if defined) and checks

the event status – if it returns anything other than FALSE$ the event is

cancelled.

• Calls the AUTHENTICATE method to cancel the request.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_10

add_BasicAuthenticationRequested method on the Microsoft website.

Example

 Function WEBAUTHREQUEST(CtrlEntID, CtrlClassID, URI, Challenge)

 // Example: A WEBAUTHREQUEST handler that uses a dialog box to ask the user
 // for the credentials for the passed URL. The AUTHENTICATE method is
 // executed to return an answer to the server.

 // Assume we have a dialog box called GET_WEB_CREDENTIALS that takes
 // the passed URI and Challenge string returned from the server.

 DlgParams = URL : @fm : Challenge
 Credentials = Dialog_Box("GET_WEB_CREDENTIALS", @Window, DlgParams)

 If BLen(Credentials) Then
 // Assume the dialog passed back the UserName and Password as
 // an @fm-delimited array

 UN = Credentials<1>
 PW = Credentials<2>

 Call Exec_Method(CtrlEntID, "AUTHENTICATE", UN, PW, FALSE$)

 End Else
 // User Cancelled - stop the request
 Call Exec_Method(CtrlEntID, "AUTHENTICATE", "", "", TRUE$)
 End

 Return FALSE$

See Also

WEBVIEW AUTHENTICATIONMODE property, WEBVIEW AUTHENTICATE method.

WEBCDPEVENT event

Description

Occurs when the WEBVIEW object receives notification that a tracked CDP event is

fired. CDP events can be tracked by using the ADDCDPEVENT method. The

Chrome DevTools Protocol allows for tools to instrument, inspect, debug and profile

Chromium, Chrome and other Blink-based browsers.

Syntax

 bForward = WEBCDPEVENT(CtrlEntID, CtrlClassID, EventName, JsonEventInfo, |

 SessionID)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

EventName Name of the CDP event that has triggered the WEBCDPEVENT notification.

JsonEventInfo A JSON object containing information about the CDP event. The contents of

this argument depend on the CDP event and it may be null.

SessionID The session ID of the target where the CDP event originates from. This

parameter may be null if the event comes from the default session for the top

page.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBCDPEVENT event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2DevToolsProtocolEventReceiver

add_DevToolsProtocolEventReceived method on the Microsoft website.

Example

 // Example: Listen for "CDP Log" events from the WEBVIEW object. The
 // CDP offers a logging service - to monitor log entries in OpenInsight
 // we can do the following:
 //
 // 1) Listen for the "Log.entryAdded" event
 // 2) Begin logging by using the CDP "Log.enable" method
 // 3) Handle the new log entry in the WEBCDPEVENT event
 // 4) Stop logging by using the CDP "Log.disable" method.

 $Insert Logical

 // Listen for the "Log.entryAdded" event
 IsOk = Exec_Method(CtrlEntID, "ADDCDPEVENT", "Log.entryAdded")

 // Begin logging by using the CDP "Log.enable" method
 IsOK = Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", "Log.enable", "", TRUE$)

 // In the WEBCDPEVENT we now receive notifications when a log entry
 // is added along with a JSON object containing the details (see below)

 ...

 // Stop logging by using the CDP "Log.disable" method
 IsOK = Exec_Method(CtrlEntID, "EXECUTECDPMETHOD", "Log.disable", "", TRUE$)

 Function WEBCDPEVENT(CtrlEntID, CtrlClassID, EventName, JsonEventInfo, SessionID)

 // Example: When we get a "Log.entryAdded" event then output the
 // JsonEventInfo to the Sytem Monitor
 $Insert Logical

 bForward = TRUE$

 Begin Case
 Case (EventName == "Log.entryAdded")

 MsgText = EventName : ": " : JsonEventInfo
 Call Exec_Method("SYSTEMMONITOR", "OUTPUT", MsgText)

 bForward = FALSE$; // Handled

 End Case

 Return bForward

See Also

WEBVIEW ADDCDPEVENT method, WEBVIEW REMOVECDPEVENT method.

WEBCDPMETHODRESULT event

Description

Returns the results of a previous asynchronous call to the EXECUTECDPMETHOD

method.

Syntax

 bForward = WEBCDPMETHODRESULT(CtrlEntID, CtrlClassID, ErrorCode, JsonResult)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

ErrorCode Error code returned from the method call (if appropriate).

JsonResult A JSON object containing results of the method call. The contents of this

argument depend on the CDP method and may be parsed and processed

using the Basic+ JSON stored procedures like RTI_RJSON.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBCDPMETHODRESULT

event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 CallDevToolsProtocolMethod

method on the Microsoft website.

Example

 Function WEBCDPMETHODRESULT(CtrlEntID, CtrlClassID, ErrorCode, JsonResult)

 // Assume we have executed the "Browser.getVersion" method - we are
 // expecting a Json object that looks like this:
 //
 // {
 // "jsVersion":"11.9.17.11",
 // "product":"Edg/119.0.2151.97",
 // "protocolVersion":"1.3",
 // "revision":"@42f50dec8b7a97d2cd39634128418ccfb4ef77b8",
 // "userAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) ... <more>
 // }
 //
 // So we can use RTI_RJSON to parse out the members

 $Insert RTI_RJSON_Equates
 $Insert Logical

 Product = ""

 If (ErrorCode == 0) Then

 ObjVersion = RTI_RJSON(RJSON_MTD_PARSE$, JsonResult)
 If ObjVersion Then

 ItemCount = RTI_RJSON(RJSON_MTD_GETITEMCOUNT$, ObjVersion)
 If ItemCount Then
 ItemNames = RTI_RJSON(RJSON_MTD_GETOBJECTMEMBERS$, ObjVersion)

 Locate "product" In ItemNames Using @Fm Setting Pos Then
 Product = RTI_RJSON(RJSON_MTD_GETITEMVALUE$, ObjVersion, "product")
 End
 End

 Call RTI_RJSON(RJSON_MTD_DELETE$, ObjVersion)
 End
 End

 If BLen(Product) Then
 Call Msg(@Window, Product)
 End

Return FALSE$

See Also

WEBVIEW ADDCDPEVENT method, WEBVIEW EXECCDPMETHOD method, WEBVIEW

EXECUTESCRIPT method, WEBVIEW REMOVECDPEVENT method.

WEBCLOSEWINDOW event

Description

Occurs when content inside the WEBVIEW object requests to close the window, such

as after the JavaScript window.close() is executed.

Syntax

 bForward = WEBCLOSEWINDOW(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

The application should close the WEBVIEW and its parent form or “tab” if that makes

sense to the application.

There is no system-level promoted event handler for the WEBCLOSEWINDOW event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_WindowCloseRequested

method on the Microsoft website.

Example

 Function WEBCLOSEWINDOW(CtrlEntID, CtrlClassID)

 // Example: Ask the user if it's OK to close the parent form before closing...
 $Insert Msg_Equates
 $Insert Logical

 MsgRec = ""
 MsgRec<MTEXT$> = "The document is requesting to close the form - OK to close?"
 MsgRec<MTYPE$> = "BNY"
 MsgRec<MJUST$> = "C"
 MsgRec<MICON$> = "?"
 MsgRec<MCAPTION$> = "Close form"

 MsgVal = Msg(@Window, MsgRec)

 If (MsgVal == TRUE$)
 // Async CLOSE...
 Call Exec_Method(@Window, "CLOSE", FALSE$, TRUE$)
 End

Return FALSE$

See Also

N/a.

WEBCONTENTLOADED event

Description

Occurs when the initial HTML document has been parsed during navigation.

Syntax

 bForward = WEBCONTENTLOADED(CtrlEntID, CtrlClass, NavID, URI)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

NavID Unique identifier of the navigation process that triggered the

WEBCONTENTLOADED event.

URI Location that is being navigated to.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBCONTENTLOADED

event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_2 add_DOMContentLoaded

method on the Microsoft website.

Example

 Function WEBCONTENTLOADED(CtrlEntID, CtrlClassID, NavID, URI)

 // Example: Update a ListBox log tracking navigation events

 LogText = "Loaded content for " : URI
 Call Exec_Method(@Window : ".LST_NAVLOG", "INSERT", -1, LogText)

 Return TRUE$

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method, WEBVIEW

WEBCONTENTLOADING event, WEBVIEW WEBHISTORYCHANGED event, WEBVIEW

WEBNAVIGATING event, WEBSOURCECHANGED event.

WEBCONTENTLOADING event

Description

Occurs when a navigation process begins loading content into the WEBVIEW object.

Syntax

 bForward = WEBCONTENTLOADING(CtrlEntID, CtrlClass, NavID, URI, ErrorPage)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

NavID Unique identifier of the navigation process that triggered the

WEBCONTENTLOADING event.

URI Location that is being navigated to.

ErrorPage Set to TRUE$ if the loaded content is an Error Page, or FALSE$ otherwise.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBCONTENTLOADING

event.

This event does not trigger if a same page navigation occurs.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_ContentLoading method on

the Microsoft website.

Example

 Function WEBCONTENTLOADING(CtrlEntID, CtrlClassID, NavID, URI, ErrorPage)

 // Example: Alert the user to an error condition

 If ErrorPage Then
 MsgText = "Error when loading " : quote(URI)
 Call Msg(@Window, MsgText)
 End

 Return TRUE$

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method, WEBVIEW

WEBCONTENTLOADED event, WEBVIEW WEBHISTORYCHANGED event, WEBVIEW

WEBNAVIGATING event, WEBSOURCECHANGED event.

WEBCONTEXTMENU event

Description

Occurs when the WEBVIEW object wishes to display a context menu after a user

right-clicks somewhere on the hosted content. It is the WEBVIEW equivalent of the

Common GUI CONTEXTMENU event.

Syntax

 bForward = WEBCONTEXTMENU(CtrlEntID,

 CtrlClassID,

 MenuID,

 MenuStruct,

 XPos,

 YPos,

 TargetInfo,

 DefaultStruct,

 AttachOnly)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

MenuID ID of the ContextMenu entity to display.

MenuStruct A dynamic array containing the executable structure of the menu.

XPos Client area X-coordinate where the user clicked.

YPos Client area Y-coordinate where the user clicked.

TargetInfo An @vm-delimited array of information about the item that the user has

clicked on. See the Remarks section below for more details.

 <0,1> Type

 <0,2> IsEditable

 <0,3> PageUri

 <0,4> SourceUri

 <0,5> LinkUri

 <0,6> LinkText

 <0,7> FrameUri

 <0,8> SelectionText

 <0,9> MainFrameRequest

DefaultStruct A dynamic array containing the executable structure of the default context

menu as supplied by the WEBVIEW object. This is the menu that the WEBVIEW

would have displayed if the CONTEXTMENU property was not set.

AttachOnly If TRUE$ then the TRACKPOPUPMENU method is called with the AttachOnly

flag so that the menu is parsed, created and attached, but not displayed.

This argument should not be changed by a WEBCONTEXTMENU event handler.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The WEBVIEW object will not display any context menus if the

“EnableContextMenus” option in the SETTINGS property is FALSE$.

The WEBVIEW object supplies information about the item that has been clicked on

via the TargetInfo parameter. This is an @vm-delimited array with the following

structure:

Index Name Description

<0,1> Type Specifies the type of the item. Can be one of the following:

 "0" : Page

 "1" : Image

 "2" : SelectedText

 "3" : Audio

 "4" : Video

<0,2> IsEditable Set to TRUE$ if the context menu is requested on an editable item, or

FALSE$ otherwise.

<0,3> PageURI Contains the URI of the page.

<0,4> SourceURI Contains the source URI of the item (can be null).

<0,5> LinkURI Contains the link URI of the item (can be null).

<0,6> LinkText Contains the link text of the item is a link (can be null).

<0,7> FrameURI Contains the URI of the frame.

<0,8> SelectionText Contains the text selected if appropriate (can be null).

<0,9> MainFrameRequest Set to TRUE$ if the context menu was requested on the main frame,

or FALSE$ if on another frame.

This event has a system-level handler which performs the following tasks:

• Adds the default system menus to the MenuStruct if appropriate.

• Calling a WEBCONTEXTMENU quick event, if defined.

o If the event status returns anything other than 0 then the context menu

display is cancelled via the CANCELCONTEXTMENU method.

• Displaying the context menu via the TRACKPOPUPMENU method.

Note that it is possible to merge items from the passed default WEBVIEW context

menu (“DefaultStruct”) into the OpenInsight context menu to be displayed

(“MenuStruct”). When doing this it is important to ensure that the details of any items

copied from DefaultStruct into MenuStruct are preserved because they contain

special flags and identifiers that are needed by the WEBVIEW object if the item is

selected by the user.

Equates constants for working with menu structures can be found in the

PS_MENU_EQUATES insert record.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_11 add_ContextMenuRequested

method on the Microsoft website.

Example

 Function WEBCONTEXTMENU(CtrlEntID, CtrlClassID, MenuID, MenuStruct, xPos, yPos, |
 TargetInfo, DefaultStruct, AttachOnly)

 // Example: Prevent a context menu from being displayed for images

 $Insert PS_WebView_Equates
 $Insert Logical

 If (TargetInfo<0,WBV_TARGETINFO_POS_TYPE$> == WBV_TARGET_TYPE_IMAGE$) then
 Call Exec_Method(CtrlEntID, "CANCELCONTEXTMENU", MenuID)
 Return FALSE$
 End

 Return TRUE$

 Function WEBCONTEXTMENU(CtrlEntID, CtrlClassID, MenuID, MenuStruct, xPos, yPos, |
 TargetInfo, DefaultStruct, AttachOnly)

 // Example: Simple trick to use the default WEBVIEW context menu and make
 // it look like a native OI menu

 $Insert PS_WebView_Equates
 $Insert Logical

 MenuStruct = DefaultStruct

 Return TRUE$

 Function WEBCONTEXTMENU(CtrlEntID, CtrlClassID, MenuID, MenuStruct, xPos, yPos, |
 TargetInfo, DefaultStruct, AttachOnly)

 // Example: Assume that our OI menu has a "COPY" item and we want to replace it
 // with the "COPY" item from the WEBVIEW control (if it has one)

 $Insert PS_WebView_Equates
 $Insert PS_Menu_Equates
 $Insert Logical

 CopyItem = ""
 GoSub GetWebViewCopyItem

 If BLen(CopyItem) Then
 GoSub ReplaceOICopyItem
 End

 Return TRUE$

 GetWebViewCopyItem:
 XCount = FieldCount(DefaultStruct, @Vm)
 For X = 5 to XCount
 If (DefaultStruct<0,X>[1,1] == "@") Then
 Null ; // Ignore - it's an imagelist header
 End Else
 If (DefaultStruct<0,X,MENUPOS_TYPE$> == MENUTYPE_ITEM$) Then
 ItemName = DefaultStruct<0,X,MENUPOS_NAME$>[-1,"B."]
 Begin Case
 Case (ItemName == "COPY")
 CopyItem = DefaultStruct<0,X>
 X = XCount ; // Break;
 End Case
 End
 End
 Next

 Return

 ReplaceOICopyItem:
 XCount = FieldCount(MenuStruct, @Vm)
 For X = 5 to XCount
 If (MenuStruct<0,X>[1,1] == "@") Then
 Null ; // Ignore - it's an imagelist header
 End Else
 If (MenuStruct<0,X,MENUPOS_TYPE$> == MENUTYPE_ITEM$) Then
 ItemName = MenuStruct<0,X,MENUPOS_NAME$>[-1,"B."]
 Begin Case
 Case (ItemName = "COPY")
 MenuStruct<0,X> = CopyItem
 X = XCount ; // Break;
 End Case
 End
 End
 Next

 Return

See Also

Common GUI CONTEXTMENU property, WEBVIEW SETTINGS property, Common GUI

SHOWMENU method, Common GUI TRACKPOPUPMENU method, WEBVEW

CANCELCONTEXTMENU method, Common GUI CONTEXTMENU event, Common GUI

MENU event, WEBVIEW INITCONTEXTMENU event, ContextMenu stored procedure.

WEBDATACLEARED event

Description

Returns the results of a call to the CLEARBROWSINGDATA method.

Syntax

 bForward = WEBDATACLEARED(CtrlEntID, CtrlClassID, SuccessFlag, ErrorCode)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

SuccessFlag Set to TRUE$ if the WEBVIEW object was clear operation was successful, or

FALSE$ otherwise.

ErrrorCode If SuccessFlag is FALSE$ then ErrorCode contains the error code that describes

the reason for the failure.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBDATACLEARED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2Profile

ClearBrowsingDataInTimeRange method on the Microsoft website.

Example

 Function WEBDATACLEARED(CtrlEntID, CtrlClassID, SuccessFlag, ErrorCode)

 // Example: Display an error message if necessary
 Declare Function RTI_ErrorText
 $Insert Logical

 If SuccessFlag Else

 ErrorText = RTI_ErrorText("WIN", ErrorCode, TRUE$)

 Call Msg(@Window, ErrorText)

 End

 Return TRUE$

See Also

WEBVIEW CANGOBACK property, WEBVIEW CANGOFORWARD property, WEBVIEW

HISTORY property, WEBVIEW BACK method, WEBVIEW FORWARD method, WEBVIEW

CLEARBROWSINGDATA method.

WEBHISTORYCHANGED event

Description

Occurs when a navigation updates the history of the WEBVIEW object.

Syntax

 bForward = WEBHISTORYCHANGED(CtrlEntID, CtrlClass)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBHISTORYCHANGED

event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_HistoryChanged method on the

Microsoft website.

Example

 Function WEBHISTORYCHANGED(CtrlEntID, CtrlClassID)

 // Example: Update the Back and Forward buttons when the history
 // changes

 BackEnabled = Get_Property(CtrlEntID, "CANGOBACK")
 ForwardEnabled = Get_Property(CtrlEntID, "CANGOFOWARD")

 Call Set_Property(@Window : ".BTN_BACK", "ENABLED", BackEnabled)
 Call Set_Property(@Window : ".BTN_FORWARD", "ENABLED", ForwardEnabled)

 Return TRUE$

See Also

WEBVIEW CANGOBACK property, WEBVIEW CANGOFORWARD property, WEBVIEW

HISTORY property, WEBVIEW BACK method, WEBVIEW FORWARD method.

WEBINITCONTEXTMENU event

Description

Occurs when the WEBVIEW object wishes to initialize a context menu after a user

right-clicks somewhere on the hosted content. This event is responsible for initializing

the context menu ready for display. It is the WEBVIEW equivalent of the Common

GUI INITCONTEXTMENU event.

Syntax

 bForward = WEBINITCONTEXTMENU(CtrlEntID,

 CtrlClassID,

 MenuID,

 XPos,

 YPos,

 TargetInfo,

 DefaultStruct)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

MenuID ID of the ContextMenu entity to display.

XPos Client area X-coordinate where the user clicked.

YPos Client area Y-coordinate where the user clicked.

TargetInfo An @vm-delimited array of information about the item that the user has

clicked on. See the Remarks section below for more details.

 <0,1> Type

 <0,2> IsEditable

 <0,3> PageUri

 <0,4> SourceUri

 <0,5> LinkUri

 <0,6> LinkText

 <0,7> FrameUri

 <0,8> SelectionText

 <0,9> MainFrameRequest

DefaultStruct OIWIN structure of the default context menu as supplied by the WEBVIEW

object. This is the menu that the WEBVIEW would have displayed if the

CONTEXTMENU property was not set.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The WEBVIEW object will not display any context menus if the

“EnableContextMenus” option in the SETTINGS property is FALSE$.

The WEBVIEW object supplies information about the item that has been clicked on

via the TargetInfo parameter. This is an @vm-delimited array with the following

structure:

Index Name Description

<0,1> Type Specifies the type of the item. Can be one of the following:

 "0" : Page

 "1" : Image

 "2" : SelectedText

 "3" : Audio

 "4" : Video

<0,2> IsEditable Set to TRUE$ if the context menu is requested on an editable item, or

FALSE$ otherwise.

<0,3> PageURI Contains the URI of the page.

<0,4> SourceURI Contains the source URI of the item (can be null).

<0,5> LinkURI Contains the link URI of the item (can be null).

<0,6> LinkText Contains the link text of the item is a link (can be null).

<0,7> FrameURI Contains the URI of the frame.

<0,8> SelectionText Contains the text selected if appropriate (can be null).

<0,9> MainFrameRequest Set to TRUE$ if the context menu was requested on the main frame,

or FALSE$ if on another frame.

This event has a system-level handler which performs the following tasks:

• Calling the Yield stored procedure to clear any pending events.

• Calling a WEBINITCONTEXTMENU quick event, if defined.

o If the event status returns anything other than 0 then the context menu

display is cancelled.

• Reading the context menu definition from the repository (if not already

cached).

• Compiling it into an “executable” format and caching it.

• Compiling the “DefaultStruct” menu struct into an executable format.

• Firing the subsequent WEBCONTEXTMENU event.

The intent of the WEBINITCONTEXTMENU event is as a place for the Presentation

Server to begin the WEBVIEW context menu process, so as such it is a system tool – it

is not really intended that developers have to interact with this event, although

there’s nothing to prevent this if desired.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_11 add_ContextMenuRequested

method on the Microsoft website.

Example

N/a.

See Also

Common GUI CONTEXTMENU property, WEBVIEW SETTINGS property, Common GUI

SHOWMENU method, Common GUI TRACKPOPUPMENU method, Common GUI

CONTEXTMENU event, Common GUI MENU event, WEBVIEW CONTEXTMENU event,

ContextMenu stored procedure.

WEBINITSCRIPTADDED event

Description

Returns the results of a call to the ADDINITSCRIPT method.

Syntax

 bForward = WEBINITSCRIPTADDED(CtrlEntID, CtrlClassID, ID, ErrorCode)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

ID Unique ID of the script that was added. This can be used with the

REMOVEINITSCRIPT method.

ErrorCode Contains an error code if a problem occurred when adding the script.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBINITSCRIPTADDED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2

AddScriptToExecuteOnDocumentCreated method on the Microsoft website.

Example

 Function WEBINTISCRIPTADDED(CtrlEntID, CtrlClassID, ID, ErrorCode)

 // Example: Display an error message if a call to ADDINITSCRIPT failed
 $Insert Logical

 If ErrorCode Then
 ErrorText = "ADDINITSCRIPT failed - Error [" : ErrorCode : "]"
 Call Msg(@Window, ErrorText)
 End

 Return TRUE$

See Also

WEBVIEW ADDINITSCRIPT method, WEBVIEW EXECUTESCRIPT method, WEBVIEW

REMOVEINITSCRIPT method.

WEBMESSAGE event

Description

Occurs when the WEBVIEW object receives a WebMessage from the hosted content

via the window.chrome.webview.postMessage() method.

Syntax

 bForward = WEBMESSAGE(CtrlEntID, CtrlClass, URI, JsonMessage, TextMessage)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

URI The URI of the document that sent the message.

JsonMessage The message that was posted converted to a JSON string. This value can be

parsed and processed using the Basic+ JSON stored procedures like

RTI_RJSON.

TextMessage If the posted message was a simple string type this parameter contains the

raw non-JSON version of the message, otherwise it is set to null.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBMESSAGE event.

The EnableWebMessages field in the WEBVIEW SETTINGS property must be set to

TRUE$ for this WebMessaing to work.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_WebMessageReceived method

on the Microsoft website.

Example

 // Example JavaScript for the HTML document to send a object message
 // back to the WEBVIEW object.
 //
 // We are going to get the contents of the FORENAME and SURNAME INPUT
 // elements and combine them into a JavaScript object which we then post
 // back the WEBVIEW.
 //
 // In the WEBVIEW object's WEBCHANGED event we can parse and display
 // the "forename" member in an OpenInsight message.
 //
 // Note that we are sending it as an object so it will appear in
 // the JsonMesssage parameter of the WEBMESSAGE event.

 // This should be placed in the HTML document...
 <script>
 let dataObject = {};

 dataObject.forename = document.getElementById("FORENAME").value;
 dataObject.surname = document.getElementById("SURNAME").value;

 window.chrome.webview.postMessage(dataObject);

 </script>

 ///
 ///

 Function WEBMESSAGE(CtrlEntID, CtrlClassID, URI, JsonMessage, TextMessage)

 // Example: Look for a JSON message, extract the "forename" value, and then
 // display it via Msg()
 //
 // (Error checking omitted for clarity!)

 $Insert RTI_RJSON_Equates

 Forename = ""

 ObjMessage = RTI_RJSON(RJSON_MTD_PARSE$, JsonMessage)
 If ObjMessage Then

 ItemCount = RTI_RJSON(RJSON_MTD_GETITEMCOUNT$, ObjMessage)
 If ItemCount Then
 ItemNames = RTI_RJSON(RJSON_MTD_GETOBJECTMEMBERS$, ObjMessage)

 Locate "forename" In ItemNames Using @Fm Setting Pos Then
 Forename = RTI_RJSON(RJSON_MTD_GETITEMVALUE$, ObjMessage, "forename")
 End
 End

 Call RTI_RJSON(RJSON_MTD_DELETE$, ObjMessage)
 End

 If BLen(Forename) Then
 Call Msg(@Window, Forename)
 End

 Return TRUE$

 // Example JavaScript for the HTML document to send a string message
 // back to the WEBVIEW object.
 //
 // We are going to get the contents of the FORENAME INPUT element
 // and send to the WEBVIEW object. Then in the WEBVIEW object's
 // WEBCHANGED event we can pick this up and display it in an
 // OpenInsight message.
 //
 // Note that we are sending it as a string, so it will appear in
 // the TextMesssage parameter of the WEBMESSAGE event.

 // This should be placed in the HTML document...
 <script>

 let objFormName = document.getElementById("FORENAME");
 window.chrome.webview.postMessage("-forename:" + objFormName.value);

 </script>

 ///
 ///

 Function WEBMESSAGE(CtrlEntID, CtrlClassID, URI, JsonMessage, TextMessage)

 // Example: Look for a text message prefixed with "-foreName" and if found
 // : display it via Msg()

 If BLen(TextMessage) Then

 Prefix = TextMessage[1,":",TRUE$]
 Message = TextMessage[BCol2()+1,\00\,TRUE$]

 If Prefix == "-forename" Then
 Call Msg(@Window, "Forename is " : Message)
 End

 End

 Return TRUE$

See Also

WEBVIEW SETTINGS property, WEBVIEW POSTJSONMESSAGE method, WEBVIEW

POSTTEXTMESSAGE method.

WEBMUTEDCHANGED event

Description

Occurs when the “audio muted” status is changed.

Syntax

 bForward = WEBMUTEDCHANGED(CtrlEntID, CtrlClassID, AudioMuted)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

AudioMuted Set to TRUE$ if the WEBVIEW object is audio is muted, or FALSE$ otherwise.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBMUTEDCHANGED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_8 add_IsMutedAudioChanged

method on the Microsoft website.

Example

 Function WEBMUTEDCHANGED(CtrlEntID, CtrlClassID, AudioMuted)

 // Example: Display a message with the muted status

 If AudioMuted Then
 MsgText = "In Basic+, no one can hear you scream"
 End Else
 MsgText = "Audio On"
 End

 Call Msg(@Window, MsgRec)

 Return TRUE$

See Also

WEBVIEW AUDIOPLAYING property, WEBVIEW MUTED property, WEBVIEW

WEBAUDIOCHANGED event.

WEBNAVIGATED event

Description

Occurs when the WEBVIEW object has completely loaded, or loading has stopped

with an error.

Syntax

 bForward = WEBNAVIGATED(CtrlEntID, CtrlClass, NavID, URI, Redirected, |

 UserInitiated, StatusInfo, FrameID)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

NavID Unique identifier for the navigation process.

URI Location that is being navigated to.

Redirected Set to TRUE$ when the navigation has been redirected, or FALSE$ otherwise.

UserInitiated Set to TRUE$ when the navigation was initiated through a user gesture as

opposed to programmatic navigation by page script.

StatusInfo Contains an @vm-delimited array of data regarding the outcome of the

navigation:

 <0,1> SuccessFlag (TRUE$ or FALSE$)

 <0,2> HTTPStatusCode

 <0,3> WebErrorStatus (if the navigation failed)

FrameID If the navigation event was triggered from an IFrame then this argument

contains the name of the frame.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBNAVIGATED event.

The SuccessFlag member in the StatusInfo parameter is set to FALSE$ for a navigation

that ended up in an error page (failures due to no network, DNS lookup failure, HTTP

server responds with 4xx), but may also be FALSE$ for additional scenarios such as a

window.stop() JavaScript statement run on navigated page. Note that WebView2

will report the navigation as 'unsuccessful' if the load for the navigation did not

reach the expected completion for any reason. Such reasons include potentially

catastrophic issues such network and certificate issues but can also be the result of

intended actions such as the app canceling a navigation or navigating away

before the original navigation completed. Applications should not just rely on this

flag, but also consider the reported WebErrorStatus to determine whether the failure

is indeed catastrophic in their context (Equates for the WebErrorStatus codes can be

found the PS_WEBVIEW_EQUATES insert record).

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_2 add_add_NavigationCompleted

method on the Microsoft website.

Example

 Function WEBNAVIGATED(CtrlEntID, CtrlClassID, NavID, URI, Redirected, |
 UserInitiated, StatusInfo, FrameID)

 // Example: Display a message if the navigation failed

 $Insert PS_WEBVIEW_Equates
 $Insert Msg_Equates

 If StatusInfo<0,WBV_NAV_STATUS_POS_SUCCESSFLAG$> else

 MsgText = "WebView Navigation Error"
 MsgText := "||URI: " : URI
 MsgText := "|HTTP Status: " : StatusInfo<0,WBV_NAV_STATUS_POS_HTTPSTATUSCODE$>
 MsgText := "|WebError Status: " : StatusInfo<0,WBV_NAV_STATUS_POS_WEBERRORSTATUS$>

 MsgRec = ""
 MsgRec<MTEXT$> = MsgText
 MsgRec<MICON$> = "!"
 MsgRec<MCAPTION$> = "WebView Navigation Error"

 Call Msg(@Window, MsgRec)

 End

 Return TRUE$

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method, WEBVIEW

WEBCONTENTLOADED event, WEBVIEW WEBCONTENTLOADING event, WEBVIEW

WEBHISTORYCHANGED event, WEBVIEW WEBNAVIGATING event,

WEBSOURCECHANGED event.

WEBNAVIGATING event

Description

Occurs when the WEBVIEW object is navigating to a different URI. Redirects trigger

this event as well, and the NavID is the same as the original one.

Syntax

 bForward = WEBNAVIGATING(CtrlEntID, CtrlClass, NavID, URI, Redirected, |

 UserInitiated, FrameID)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

NavID Unique identifier for the navigation process – this is passed to subsequent

events that are triggered from the same navigation.

URI Location that is being navigated to.

Redirected Set to TRUE$ when the navigation has been redirected, or FALSE$ otherwise.

UserInitiated Set to TRUE$ when the navigation was initiated through a user gesture as

opposed to programmatic navigation by page script.

FrameID If the navigation event was triggered from an IFrame then this argument

contains the name of the frame.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBNAVIGATING event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_2 add_NavigationStarting and

add_FrameNavigationStarting methods on the Microsoft website.

Example

 Function WEBNAVIGATING(CtrlEntID, CtrlClassID, NavID, URI, Redirected, |
 UserInitiated, FrameID)

 // Example: Update a ListBox log tracking navigation events

 LogText = "Navigating to " : URI
 Call Exec_Method(@Window : ".LST_NAVLOG", "INSERT", -1, LogText)

 Return TRUE$

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method, WEBVIEW

WEBCONTENTLOADED event, WEBVIEW WEBCONTENTLOADING event, WEBVIEW

WEBHISTORYCHANGED event, WEBVIEW WEBNAVIGATED event,

WEBSOURCECHANGED event.

WEBOPENWINDOW event

Description

Occurs when the WEBVIEW object attempts to open a new window from a clicked

hyperlink or the JavaScript “window.open” method.

A WEBOPENWINDOW event handler must do one of the following:

• Allow a new “WebView2 window” to open (this is a basic browser window

managed by the WEBVIEW object itself and is not an OpenInsight form). This

is the default behavior.

• “Redirect” the open request to another existing WEBVIEW object. For

example a WEBVIEW object in another OpenInsight form or one on another

tab page.

• Deny the request. This will stop the new window from opening.

Syntax

 bForward = WEBOPENWINDOW(CtrlEntID, CtrlClassID, OpenID, URI, WindowInfo, |

 UserInitiated)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

OpenID A unique integer value that identifies the “open window” request.

URI URI that the new window will navigate to.

WindowInfo Contains an @vm-delimited dynamic array of requested window features.

Note that it is possible for the size and position values to be null if this wasn't

specified in the originating window.open() call.

<0,1> WindowName

<0,2> Left

<0,3> Top

<0,4> Width

<0,5> Height

<0,6> ShowMenuBar

<0,7> ShowScrollBars

<0,8> ShowStatusBar

<0,9> ShowToolBar

You may ignore these options if you are redirecting to another WEBVIEW

object – they are simply indications of what the opener would prefer)

UserInitiated A boolean value set to TRUE$ if the “open window” was generated by the

user (e.g. clicking a hyperlink), or FALSE$ if it was generated from a script.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The ALLOWOPENWINDOW method is used to allow the “open window” request or

redirect it to another WEBVIEW object.

The DENYOPENWINDOW method is used to stop the new window from opening.

The WEBOPENWINDOW event has a system-level promoted event handler that

performs the following tasks:

• Executes the WEBOPENWINDOW quick event handler (if defined) and checks

the event status – if it returns anything other than FALSE$ the event is

cancelled.

• Calls the ALLOWOPENWINDOW method to open a new “WebView2 window”

with the requested WindowInfo options.

Equates for use with this event can be found in the PS_WEBVIEW_EQUATES insert

record.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_NewWindowRequested

method on the Microsoft website.

Example

 Function WEBOPENWINDOW(CtrlEntID, CtrlClassID, OpenID, URI, WindowInfo, |
 UserInitiated)

 // Example: A WEBOPENWINDOW event handler that performs the following:
 //
 // 1) If the URI points to a localhost running on port 8888 it
 // creates a new OpenInsight form called LOCALHOST_OPENWIN with
 // with a WEBVIEW control called WBV_BROWSER and redirects to
 // that.
 //
 // 2) If the URI is from "www.revelation.com" we allow it to open
 // a new "WebView2 window".
 //
 // 3) For anything else we deny it.
 //
 // (Note we are not using a robust way of getting the host and port from
 // the URI, but this is just an example and not production code ;-))

 $Insert Logical

 Begin Case
 Case IndexC(URI, "localhost:8888", 1)

 WinID = Start_Window("LOCALHOST_OPENWIN", @Window, "")
 If BLen(WinID) Then

 Call Exec_Method(CtrlEntID, |
 "ALLOWOPENWINDOW", |
 OpenID, |
 WinID : ".WBV_BROWSER")

 Case IndexC(URI, "www.revelation.com", 1)

 Call Exec_Method(CtrlEntID, |
 "ALLOWOPENWINDOW", |
 OpenID)

 Case OTHERWISE$

 Call Exec_Method(CtrlEntID, |
 "DENYOPENWINDOW", |
 OpenID)

 End Case

 Return FALSE$

See Also

WEBVIEW ALLOWOPENWINDOW method, WEBVIEW DENYOPENWINDOW method.

WEBPDFPRINTED event

Description

Returns the results of a previous call to the PRINTTOPDF method.

Syntax

 bForward = WEBPDFPRINTED(CtrlEntID, CtrlClassID, FileName, SuccessFlag, |

 ErrorCode)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

FileName Name and path of the file that was printed.

SuccessFlag TRUE$ if the print operation was successful, or FALSE$ if it failed.

ErrorCode Error code returned by the WEBVIEW object if the print operation failed. This

will be a Windows “HRESULT” error code, so a description may be obtained by

using the “WIN” method in the RTI_ErrorText stored procedure (See example

below).

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBPDFPRINTED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_7 PrintToPdf method on the Microsoft

website.

Example

 FUNCTION WEBPDFPRINTED(CtrlEntID, CtrlClassID, FileName, SuccessFlag, |
 ErrorCode)

 // Example - display a message with the results of the
 // print operation

 Declare Function RTI_ErrorText
 $Insert Msg_Equates
 $Insert Logical

 MsgRec = ""

 If (SuccessFlag) Then
 // Display a timed "success" message
 MsgRec<MTEXT$> = Quote(FileName) : " printed successfully"
 MsgRec<MTYPE$> = "T2" ; // Timed

 End Else
 // Display an error message

 ErrorText = RTI_ErrorText("WIN", ErrorCode, TRUE$)

 MsgText = "Failed to print " : Quote(FileName)
 MsgText := "Error Code: " : ErrorCode : "|"
 MsgText := "Error Details: " : ErrorText : "||"

 MsgRec<MTEXT$> = MsgText
 MsgRec<MTYPE$> = "BO" ; // "OK"
 MsgRec<MICON$> = "!" ; // Warning

 End

 MsgRec<MJUST$> = "C"
 MsgRec<MCAPTION$> = "Print WebPage To PDF"

 Call Msg(@Window, "MsgRec")

See Also

WEBVIEW PRINTTOPDF method.

WEBPERMISSIONREQUEST event

Description

Occurs when the content in the WEBVIEW object requests permission to access

some privileged resources.

A WEBPERMISSIONREQUEST event handler should use the SETPERMISSION method to

allow or deny this request.

Syntax

 bForward = WEBPERMISSIONREQUEST(CtrlEntID, CtrlClassID, URI, RequestType, |

 UserInitiated)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

URI URI of the request that triggered the permission request.

RequestType Identifies the type of resource requested. Can be one of the following values:

 0 : Unknown

 1 : Microphone

 2 : Camera

 3 : Geolocation

 4 : Notification

 5 : Other Sensor

 6 : Read Clipboard

UserInitiated Set to TRUE$ if the request originated from a user gesture, or FALSE$ otherwise.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

The WEBPERMISSIONREQUEST event has a system-level promoted event handler that

performs the following tasks:

• Executes the WEBPERMISSIONREQUEST quick event handler (if defined) and

checks the event status – if it returns anything other than FALSE$ the event is

assumed to have been handled by the quick event.

• Otherwise, a dialog is displayed asking the user if they wish to grant permission

to the specified resource.

• Based on the user response access is granted or denied by using the

SETPERMISSION method.

• If none of the above steps have handled the request it is cancelled by using

the CANCELPERMISSIONREQUEST method to ensure that any waiting

resources are released.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_PermissionRequested method

on the Microsoft website.

Example

 Function WEBPERMISSIONREQUEST(CtrlEntID, CtrlClassID, URI, RequestType, |
 UserInitiated)

 // Example: Allow Clipboard Read requests without any user interaction
 // otherwise pass it onto the default handler.

 $Insert PS_WebView_Equates
 $Insert Logical

 RetVal = TRUE$

 Begin Case
 Case (RequestType == WBV_PERMTYPE_CLIPBOARDREAD$)
 // Allow it - we could also check the URI or UserInitiated flag
 // for extra security ...

 bSet = Exec_Method(CtrlEntID, "SETPERMISSION", URI, RequestType, |
 UserInitiated, TRUE$)

 If bSet Then
 reVal = FALSE$; // Handled - don't pass back to the system
 End

 Case OTHERWISE$
 Null

 End Case

 Return RetVal

See Also

WEBVIEW SETPERMISSION method, WEBVIEW CANCELPERMISSIONREQUEST method.

WEBSAVEDTOFILE event

Description

Returns the results of a previous call to the SAVETOFILE method.

Syntax

 bForward = WEBSAVEDTOFILE(CtrlEntID, CtrlClassID, FileName, SuccessFlag, |

 ErrorCode, ErrorText)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

FileName Name and path of the file that was saved.

SuccessFlag TRUE$ if the file save operation was successful, or FALSE$ if it failed.

ErrorCode Error code returned by the WEBVIEW object if the save operation failed.

ErrorText Error details returned by the WEBVIEW object if the save operation failed.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBSAVEDTOFILE event.

For more information on this topic please refer to the “Page.captureSnapshot”

method in the Chrome DevTools Protocol website here:

https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-captureSnapshot

https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-captureSnapshot

Example

 FUNCTION WEBSAVEDTOFILE(CtrlEntID, CtrlClassID, FileName, SuccessFlag, |
 ErrorCode, ErrorText)

 // Example - display a message with the results of the
 // save operation

 $Insert Msg_Equates
 $Insert Logical

 MsgRec = ""

 If (SuccessFlag) Then
 // Display a timed "success" message
 MsgRec<MTEXT$> = Quote(FileName) : " saved successfully"
 MsgRec<MTYPE$> = "T2" ; // Timed

 End Else
 // Display an error message

 MsgText = "Failed to save " : Quote(FileName)
 MsgText := "Error Code: " : ErrorCode : "|"
 MsgText := "Error Details: " : ErrorText : "||"

 MsgRec<MTEXT$> = MsgText
 MsgRec<MTYPE$> = "BO" ; // "OK"
 MsgRec<MICON$> = "!" ; // Warning

 End

 MsgRec<MJUST$> = "C"
 MsgRec<MCAPTION$> = "Save WebPage As"

 Call Msg(@Window, "MsgRec")

 Return TRUE$

See Also

WEBVIEW SAVETOFILE method.

WEBSCRIPTRESULT event

Description

Returns the results of a previous asynchronous call to the EXECUTESCRIPT method.

Syntax

 bForward = WEBSCRIPTRESULT(CtrlEntID, CtrlClassID, ErrorCode, ScriptResult)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

ErrorCode Error code returned by the WEBVIEW object if the EXECUTESCRIPT method

failed. This will be a Windows “HRESULT” error code, so a description may be

obtained by using the “WIN” method in the RTI_ErrorText stored procedure

(See example below).

ScriptResult A JSON encoded string containing the result of the executed JavaScript. If

the result is undefined, contains a reference cycle, or otherwise is not able to

be encoded into JSON, then the result is considered to be null, which is

encoded in JSON as the string "null".

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBSCRIPTRESULT event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2ExecuteScript method on the

Microsoft website.

Example

 FUNCTION WEBSCRIPTRESULT(CtrlEntID, CtrlClassID, ErrorCode, ScriptResult)

 // Example - display a message with the results of the
 // executed script

 Declare Function RTI_ErrorText
 $Insert Msg_Equates
 $Insert Logical

 MsgRec = ""

 If (ErrorCode == 0) Then
 // Display message with the script results

 MsgRec<MTEXT$> = ScriptResult
 MsgRec<MTYPE$> = "BO" ; // "OK"
 MsgRec<MICON$> = "*" ; // Info

 End Else
 // Display an error message

 ErrorText = RTI_ErrorText("WIN", ErrorCode, TRUE$)

 MsgText = "Script Failed!||"
 MsgText := "Error Code: " : ErrorCode : "|"
 MsgText := "Error Details: " : ErrorText : "||"

 MsgRec<MTEXT$> = MsgText
 MsgRec<MTYPE$> = "BO" ; // "OK"
 MsgRec<MICON$> = "!" ; // Warning

 End

 MsgRec<MJUST$> = "C"
 MsgRec<MCAPTION$> = "ExecuteScript Result"

 Call Msg(@Window, "MsgRec")

See Also

WEBVIEW EXECUTESCRIPT method, WEBVIEW WEBSYNCSCRIPTRESULT event.

WEBSHOWDIALOG event

Description

Occurs when a the WEBVIEW object needs to display a custom dialog in response to

a JavaScript dialog statement (i.e. “window.alert”, “window.prompt”,

“window.confirm” and “beforeunload”).

By default, JavaScript dialogs are displayed in the WEBVIEW object using it’s default

visual style. However, if the “EnableScriptDialogs” option in the SETTINGS property is

set to FALSE$ then the WEBVIEW object triggers a WEBSHOWDIALOG event instead.

A WEBSHOWDIALOG event handler should display an appropriate OpenInsight

dialog box with the passed details. After the dialog is closed the CONFIRMDIALOG

method should be used to end the dialog request, and optionally return a value

back to the calling script for a “prompt” type dialog.

Note however, that the CANCELDIALOG method may also be used to prevent a

dialog from being displayed if desired.

Syntax

 bForward = WEBSHOWDIALOG(CtrlEntID, CtrlClass, DialogID, URI, DialogType,

 MessageText, DefaultResponse)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

DialogID A unique ID for the show dialog request. This is used with the

CONFIRMDIALOG and CANCELDIALOG methods.

URI URI of the content requesting the dialog.

DialogType Type of dialog requested. Can be one of the follow values (these map

onto the four standard JavaScript dialog types):

 0 : alert

 1 : confirm

 2 : prompt

 3 : beforeunload

MessageText Text to display in the dialog.

DefaultResponse The response text passed to a “prompt” type dialog.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

The WEBSHOWDIALOG event has a system-level promoted event handler that

performs the following tasks:

• Executes the WEBSHOWDIALOG quick event handler (if defined) and checks

the event status – if it returns anything other than FALSE$ the event is assumed

to have been fully handled.

• Displays one of the following OpenInsight message boxes based on the

dialog type:

o OIWIN_WEBSHOWDIALOG_ALERT

o OIWIN_WEBSHOWDIALOG_CONFIRM

o OIWIN_WEBSHOWDIALOG_PROMPT

o OIWIN_WEBSHOWDIALOG_BEFOREUNLOAD

• Depending on the user’s response the CONFIRMDIALOG or the

CANCELDIALOG methods are used to end the request as appropriate and

ensure that all resources are released properly.

Equates for use with this event can be found in the PS_WEBVIEW_EQUATES insert

record.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2 add_ScriptDialogOpening method

on the Microsoft website.

Example

 Function WEBSHOWDIALOG(CtrlEntID, CtrlClassID, DialogID, URI, DialogType, |
 MessageText, DefaultResponse)

 // Example: 1) Use the Msg() function for an "alert" style dialog
 // 2) Use the Msg() function for a "response" style dialog
 // 3) Don't let a "beforeunload" dialogs be shown
 // 4) Otherwise, let the system show the defaults

 $Insert PS_WebView_Equates
 $Insert Msg_Equates
 $Insert Logical

 RetVal = FALSE$; // Assume handled - don't pass onto the system

 Begin Case
 Case (DialogType == WBV_DLGTYPE_ALERT$)
 Call Msg(@Window, MessageText)
 Call Exec_Method("CONFIRMDIALOG", DialogID, "")

 Case (DialogType == WBV_DLGTYPE_PROMPT$)
 MsgRec = ""
 MsgRec<MTEXT$> = MessageText
 MsgRec<MTYPE$> = "R"
 MsgRec<MICON$> = "?"
 MsgRec<MDEFINPUT$> = DefaultResponse

 MsgVal = Msg(@Window, MsgRec)
 If (MsgVal == \0B\) Then
 Call Exec_Method("CANCELDIALOG", DialogID)
 End Else
 Call Exec_Method("CONFIRMDIALOG", DialogID, MsgVal)
 End

 Case (DialogType == WBV_DLGTYPE_BEFOREUNLOAD$)
 Call Exec_Method("CANCELDIALOG", DialogID)

 Case OTHERWISE$
 RetVal = TRUE$

 End Case

 Return RetVal

See Also

WEBVIEW SETTINGS property, WEBVIEW CANCELDIALOG method, WEBVIEW

CONFIRMDIALOG method, User Interface Integration notes.

WEBSOURCECHANGED event

Description

Occurs when the WEBVIEW object’s source property changes during navigation.

Syntax

 bForward = WEBSOURCECHANGED(CtrlEntID, CtrlClass, NewDocument)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

NewDocument Set to TRUE$ if the page being navigated to is a new document, or FALSE$

otherwise.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBSOURCECHANGED

event.

This event only runs when navigating to a different site or for fragment navigations. It

does not trigger for other types of navigations such as page refreshes or

history.pushState with the same URL as the current page.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_2 add_SourceChanged method on

the Microsoft website.

Example

 Function WEBSOURCECHANGED(CtrlEntID, CtrlClassID, NewDocument)

 // Example: Update a ListBox log tracking navigation events

 LogText = "SourceChanged"
 If NewDocument Then
 LogText := " (New Document)"
 End

 Call Exec_Method(@Window : ".LST_NAVLOG", "INSERT", -1, LogText)

 Return TRUE$

See Also

WEBVIEW URI property, WEBVIEW NAVIGATE method, WEBVIEW WEVVIEW

WEBCONTENTLOADED event, WEBCONTENTLOADING event, WEBVIEW

WEBHISTORYCHANGED event, WEBVIEW WEBNAVIGATING event.

WEBSTATUSTEXTCHANGED event

Description

Occurs when the WEBVIEW object is showing a status message, a URL, or an empty

string.

Syntax

 bForward = WEBSTATUSTEXTCHANGED(CtrlEntID, CtrlClass, StatusText)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

StatusText The status message text.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBSTATUSTEXTCHANGED

event.

The visibility of the WEBVIEW object’s own intrinsic status line is controlled by the

“EnableStatusBar” setting in the SETTINGS property.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_12 add_StatusBarTextChanged

method on the Microsoft website.

Example

 Function WEBSTATUSTEXTCHANGED(CtrlEntID, CtrlClassID, StatusText)

 // Example: Sets the LBL_STATUS control TEXT property to the WEBVIEW
 // object's status text

 Call Set_Property(@Window : ".LBL_STATUS", "TEXT", StatusText)

 Return TRUE$

See Also

WEBVIEW SETTINGS property, WEBVIEW SYNCSTATUSLINE property, WEBVIEW

NAVIGATE method, WEBVIEW NAVIGATED event.

WEBSYNCSCRIPTRESULT event

Description

Returns the results of a previous synchronous call to the EXECUTESCRIPT method.

Note: This event is considered to be an “internal” system event, and as such is not

intended for developer use – it is included here for documentation purposes only

(see the Remarks section below).

Syntax

 bForward = WEBSYNCSCRIPTRESULT(CtrlEntID, CtrlClassID, ErrorCode, |

 ScriptResult)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

ErrorCode Error code returned by the WEBVIEW object if the EXECUTESCRIPT method

failed. This will be a Windows “HRESULT” error code, so a description may be

obtained by using the “WIN” method in the RTI_ErrorText stored procedure

(See example below).

ScriptResult A JSON encoded string containing the result of the executed JavaScript. If

the result is undefined, contains a reference cycle, or otherwise is not able to

be encoded into JSON, then the result is considered to be null, which is

encoded in JSON as the string "null".

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

The WEBVIEW EXECUTESCRIPT method is a wrapper around the actual low-level script

execution API provided by Microsoft which is implemented in a fully asynchronous

fashion. This offers much better performance when running large and complex

scripts, but it also makes using the method complex and tedious for small and simple

requests, where a synchronous API would be much more preferable.

In order to provide such a synchronous interface for OpenInsight developers, the PS

uses an internal process to wait for the results of script execution before returning

control back to Basic+ from a synchronous EXECUTESCRIPT method call. One part of

this process uses the WEBSYNCSCRIPTRESULT event to transfer the script results to the

waiting caller and is implemented via a system promoted event handler. It has no

other purpose beyond this function and is considered to be an internal system event

that is not intended to be overridden by developers.

Example

N/a.

See Also

WEBVIEW EXECUTESCRIPT method, WEBVIEW WEBSCRIPTRESULT event.

WEBSUSPENDED event

Description

Occurs when the SUSPEND method has been executed and returns the results of the

suspend operation.

Syntax

 bForward = WEBSUSPENDED(CtrlEntID, CtrlClassID, SuccessFlag, ErrorCode)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

SuccessFlag Set to TRUE$ if the WEBVIEW object was suspended successfully, or FALSE$

otherwise.

ErrrorCode If SuccessFlag is FALSE$ then ErrorCode contains the error code that describes

the reason for the failure.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBSUSPENDED event.

Under certain circumstances the WEBVIEW object may be prevented from being

suspended but does not return an error code (SuccessFlag is FALSE$ and ErrorCode

is 0). Full details of the conditions that cause this can be found in the “Sleeping Tabs

FAQ” on the Microsoft website but some common reasons for this are:

• The WEBVIEW object is currently visible

• The page is currently holding a Web Lock or an IndexedDB transaction

• The page is sharing its BrowsingInstance with another page

• The page is currently being inspected by DevTools

• The page is currently playing audio

• The page is currently capturing a window or screen

• The page is currently capturing user media (webcam, microphone, etc)

• The page is currently being mirrored (casting, etc)

• The page is currently using WebUSB

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2_3 TrySuspend method on the

Microsoft website.

Example

 Function WEBSUSPENDED(CtrlEntID, CtrlClassID, SuccessFlag, ErrorCode)

 // Example: Display a message if the WEBVIEW could not be suspended.
 Declare Function RTI_ErrorText
 $Insert Logical

 Equ S_OK$ to 0 ; // From Windows "intsafe.h"

 If SuccessFlag Else

 If (ErrorCode == S_OK$) Then
 // Not an "error"
 ErrorText = "Suspend Operation prevented due to browser activity"
 End Else
 ErrorText = RTI_ErrorText("WIN", ErrorCode, TRUE$)
 End

 Call Msg(@Window, ErrorText)

 End

 Return TRUE$

See Also

WEBVIEW ISSUSPENDED property, WEBVIEW RESUME method, WEBVIEW SUSPEND

method.

WEBTITLECHANGED event

Description

Occurs when the title of the top-level document in the WEBVIEW object changes

and may run before or after the WEBNAVIGATED event.

Syntax

 bForward = WEBTITLECHANGED(CtrlEntID, CtrlClass, DocumentTitle)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

DocumentTitle New value for the document title.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

There is no system-level promoted event handler for the WEBTITLECHANGED event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView add_DocumentTitleChanged method

on the Microsoft website.

Example

 Function WEBTITLECHANGED(CtrlEntID, CtrlClassID, DocumentTitle)

 // Example: Sets the parent window caption to the WEBVIEW object's
 // document title (i.e. emulates the SYNCTITLE property).

 Call Set_Property(@Window, "TEXT", DocumentTitle)

 Return TRUE$

See Also

WEBVIEW DOCUMENTTITLE property, WEBVIEW SYNCTITLE property, WEBVIEW

NAVIGATE method, WEBVIEW NAVIGATED event.

WEBVIEWCREATED event

Description

Occurs when the WEBVIEW object has been created and is ready to navigate.

Syntax

 bForward = WEBVIEWCREATED(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure.

If TRUE$, the event processing goes to the next level.

Remarks

Due to the asynchronous programming model favored by the WEBVIEW object, it is

preferable to use this event to begin navigation rather than wait in a loop for the

INITIALIZED property to be set.

Example

 Function WEBVIEWCREATED(CtrlEntID, CtrlClassID)

 // Example: When this event is raised we know that the WEBVIEW control
 // is ready to navigate so we can go to our specified URL without a
 // problem now.

 $Insert Logical

 Call Exec_Method(CtrlEntID, "NAVIGATE", "https://www.revelation.com")

 Return TRUE$

See Also

WEBVIEW INITIALIZED property, WEBVIEW READYSTATE property, WEBVIEW NAVIGATE

method.

WEBZOOMCHANGED event

Description

Occurs when the user changes the Zoom Factor via the mouse or keyboard.

Syntax

 bForward = WEBZOOMCHANGED(CtrlEntID, CtrlClassID, ZoomFactor)

Parameters

Name Description

CtrlEntID Fully qualified name of the WEBVIEW object receiving the event.

CtrlClassID Type of object receiving the event (always "WEBVIEW").

ZoomFactor The value that the zoom factor was changed to.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

When the zoom factor is changed by the user that zoom applies only to the current

page. Setting the ZOOMFACTOR property does not trigger a WEBZOOMCHANGED

event.

For more information on this topic please refer to the Windows WebView2

documentation regarding the ICoreWebView2Controller add_ZoomFactorChanged

method on the Microsoft website.

Example

 Function WEBZOOMCHANGED(CtrlEntID, CtrlClassID, ZoomFactor)

 // Example: A WEBZOOMCHANGED event handler that sets the text of a STATIC control
 // called "TXT_ZOOM" to show the current ZoomFactor as a percentage
 $Insert Logical

 // The ZoomFactor can be a value between 0.25 (25%) and 5.0 (500%)
 ZoomPct = "Zoom: " : (ZoomFactor * 100) : "%"

 Call Set_Property_Only(@Window : ".TXT_ZOOM", ZoomPct)

 Return FALSE$

See Also

WEBVIEW ZOOMFACTOR property.

