
WINDOW (Form) object

The WINDOW object (more commonly referred to as a Form) is the core object type

used to build an OpenInsight desktop user interface. It represents a visual surface on

which other GUI controls (such as EditLines, Listboxes, Checkboxes and so on) are

placed and arranged which allow the user to interact with an application.

Developer Notes

1. Forms support an IMAGE sub-object which is used to specify their background

image.

2. Forms support a MENU sub-object as an interface to the form’s menu bar (if

present).

WINDOW Properties

The WINDOW object supports the following properties in addition to the Common

GUI Object and Container Object properties, except where noted below:

Name Description

ACCELERATORFORM Specifies the name of form that menu accelerator

keystrokes on the current form are redirected to.

ACTIVE Specifies if the form is active.

ALLOWFORMSTATEEVENTS Specifies if a form triggers the FORMSTATECHANGED

and MDICHILDSTATECHANGED events.

ALLOWSELFLOCKS Specifies if a data-bound form ignores locks placed on

the same record.

ALLOWSEQKEYRESET Specifies if a user is allowed to reset a data-bound

form's sequential key counter.

ARRANGEICONS Specifies if an MDI Frame form automatically arranges

its minimized MDI child forms.

ATRECORD Gets or sets data associated with the primary table of

a data-bound form and updates data-bound controls.

AUTOCOMPOSITED Specifies if the form uses system double-buffering

during sizing operations.

COMMUTERMODULE Contains the name of the stored procedure used to

handle events for the specified form.

CTRLMAP Returns a list of controls hosted by the specified form.

DESTROYFLAG Specifies if the form is flagged for destruction during

SYSTEM QUERYEND processing.

DPI Returns the current DPI (dots-per-inch) setting for the

specified form.

DWMANIMATION Specifies if the form uses Desktop Window Managet

(DWM) animations.

FIRSTFOCUS Returns the name of the first control that receives the

input focus when the specified form is created.

FORMBORDERSTYLE Specifies the border style of a form.

GOTFOCUSCONTROL Returns the last control on the form with a GOTFOCUS

event handler that had the input focus.

HELPBUTTON Specifies if a help button is displayed on a form's

caption bar.

HIDEEFFECT Specifies the animation used with a form's HIDE

method.

ICON Specifies the name of the icon displayed in the form's

caption bar.

ID Returns the current row key associated with the

primary table data-row in a data-bound form.

INITIALFOCUS Returns the control that receives the input focus when

the specified form is activated.

INITIALPOSITION Specifies the starting location of the specified form.

IOOPTIONS Specifies the data-binding options for a form.

LOADPREVALWAYS Specifies if the form's PREVROWVAL property is

updated during a read operation as well as a write

operation.

LOCKCOORDINATION Specifies if table-lock coordination is used by the form

in conjunction with record locking.

LOCKTYPE Specifies the type of row locking used by a form.

MAXIMIZEBUTTON Specifies if a maximize button is displayed on a form's

caption bar.

MDIACTIVE Activates an MDI child form or returns the name of the

currently active MDI child form for the specified MDI

frame form.

MDIFRAME Returns the name of the parent MDI frame form for the

specified MDI child form.

MINIMIZEBUTTON Specifies if a maximize button is displayed on a form's

caption bar.

MULTIINSTANCE Specifies if multiple instances of the same form may be

executed in the same session at runtime.

NEWROW Returns TRUE$ if the specified form has loaded a new

(blank) data row.

NOCLEARONWRITE Specifies if a data bound form clears its contents after

a successful write operation.

NUMERICCOMPARE Specifies the type of comparison the form write

operation uses to determine if a column needs

updating.

OVERLAYICON Specifies a small icon that may be used to overlay the

normal icon on a form's taskbar button.

OWNER Gets or sets the owner of the specified form.

PLACEMENTDATA Get or sets the show state and the restored, minimized,

and maximized positions of the specified form.

PREVROWVAL Returns the values that were held in the specified

form's controls for a previously loaded data row.

PROGRESSSTATE Sets the state of the current progress information on

the specified form's taskbar button.

PROGRESSVALUE Displays progress information on the specified form's

taskbar button.

QBFLIST Gets or sets the list of data keys used by the current

QBF (Query-By-Form) session for the specified form.

QBFPOS Gets or sets the index of the row to display when the

specified form has a valid QBFLIST loaded.

QBFSTATUS Returns the status of the QBF session for the specified

form.

QBFREADMODE Specifies if a form triggers the READ event when

loading data during QBF processing.

RECORD Gets or sets the cached copy of the data row

associated with the specified form.

REQUIREONWRITE Specifies when a form performs "required data"

checks.

RESTORESIZE Returns the position and size of the specified form in its

non-maximized/minimized state.

ROW Gets or sets data associated with the primary table of

a data-bound form and updates data-bound controls.

ROWLOCKED Returns TRUE$ if the form has loaded and locked a

data row.

SAVEWARN Specifies if a data-bound form contains changed data

that has not been saved.

SCALEFACTOR Specifies the custom magnification factor for a form.

SCALEUNITS Specifies how size and position coordinates are

interpreted by a form.

SHOWCAPTION Specifies if a form displays a caption bar.

SHOWEFFECT Gets or sets the animation used with the SHOW

method for the specified form.

SIZINGMODE Specifies if a form can resized with the mouse,

STATUSLINE Identifies the control that receives "status" messages

from stored procedures when the specified form is

active.

STYLESHEEET Specifies the name of a form to use as a "styling

template" when adding controls to a form at design-

time.

SUPPRESSSAVEWARN Specifies if a data-bound form checks the SAVEWARN

property before clearing its contents or closing.

SYSTEMMENU Specifies if a "System Menu" is allowed for the specified

form.

TABLE Returns the name of the primary table that the

specified form is bound to.

TASKBARBUTTON Returns a flag denoting if Windows has created a

taskbar button for the specified form.

TASKBARID Specifies a text string used to group or ungroup forms

on the Windows taskbar.

TRACKINGSIZE Specifies the minimum and maximum sizes that a user

may resize a form to.

TRANSLUCENCY Specifies the degree of transparency applied to a form

when it is painted.

TOPMOST Specifies if the form appears above all other non-

TOPMOST forms in the system z-order.

VISIBLE Specifies if a form is visible, hidden, maximized, or

minimized.

WRITEATRECORD Specifies how data set with the ATRECORD property is

saved during a write operation.

WRITEMODE Specifies how data set with the ROW property is saved

during a write operation.

The following Common GUI Object properties are not supported:

• ALLPAGES

• AUTOSCALE

• AUTOSIZEHEIGHT

• AUTOSIZEWIDTH

• BOTTOMANCHOR

• COLUMN

• CONV

• DEFPROP

• DEFPROPPOS

• DEFPOSPROPID

• DEFPROPRAW

• DEFVALUE

• DESIGNSELECTED

• ECHO

• EDGESTYLE

• FORECOLOR

• GOTFOCUSVALUE

• IMAGELIST

• INVALUE

• NEXT

• ORIGARRAY

• ORIGLABEL

• ORIGLIST

• ORIGVALUE

• PAGENUMBER

• PART

• POS

• PREVIOUS

• REQUIRED

• RIGHTANCHOR

• VALID

• VALIDMSG

ACCELERATORFORM property

Description

Gets or sets the name of a different form (with a menu) to redirect menu

accelerator keystrokes to when they are detected on the current form.

Property Value

This is string value containing the name of a running form instance. When an

accelerator keystroke is detected for the current form it is sent to the other

nominated form instance for processing.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property is useful for owned/child forms (e.g. dialog boxes) which traditionally do

not have their own menu. Rather than creating and duplicating a hidden menu

themselves (for common functions like Help and Options) they can simply redirect

the accelerator keystrokes to their parent for processing instead.

Example

 // Example - in the CREATE event of a dialog box redirect the accelerator
 // keystrokes to the parent form.

 ParentForm = Get_Property(CtrlEntID, "PARENT")
 Call Set_Property_Only(CtrlEntID, "ACCELERATORFORM", ParentForm)

See Also

MENU object.

ACTIVE property

Description

Specifies if the form is active – i.e. if it is the top-level form that the user is currently

working with.

Property Value

This is a boolean value. It returns TRUE$ if the form is the active form, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property is updated during the WM_ACTIVATE window message processing.

Please see the Microsoft website for more information on this message and on the

topic of Keyboard Focus and Activation.

Example

 // Example – Determine if the current form is the active form.

 IsActive = Get_Property(@Window, "ACTIVE")

See Also

SYSTEM FOCUS property, WINDOW ACTIVATED event, WINDOW INACTIVATED event.

ALLOWSELFLOCKS property

Description

Specifies if a data-bound form ignores locks placed on the same row if it is loaded

into other forms in the same PS instance at the same time.

Property Value

This is a boolean value. It returns TRUE$ if the form ignores "self-locks", or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

When a row is read into a form the system checks to see if it can place an exclusive

lock on it first. If it cannot, the default behavior is to display a message to the user,

warning them that they can view a read-only version of a row or abort the read

attempt.

If the ALLOWSELFLOCKS property is TRUE$ and the exclusive lock attempt fails, then

no warning will be shown if the lock is held by another form in the current PS instance

– in this case the row will be loaded and editing allowed as normal.

This facility is intended to allow forms to edit different parts of the same row at the

same time without a locking conflict. For this activity to be safe forms that use this

property must ensure that their controls do not bind to the same columns on

different forms, otherwise this may result in unexpected data integrity issues due to

the possibility of overwriting updates from other forms containing the same row.

Example

 // Example – Determine if the current form is allowing self-locks

 AllowSelfLocks = Get_Property(@Window, "ALLOWSELFLOCKS")

See Also

WINDOW IOOPTIONS property, WINDOW READROW method, WINDOW READ event.

ALLOWFORMSTATEEVENTS property

Description

Specifies if a form triggers the FORMSTATECHANGED and MDICHILDSTATECHANGED

events.

Property Value

This is a boolean value. It returns TRUE$ if the form triggers the events, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

This property is FALSE$ for existing forms and must be enabled "manually" to preserve

backwards compatibility. It is set to TRUE$ by default for new forms.

Example

 // Example – Determine if the current form is allowing "FormState" events

 AllowFormStateEvents = Get_Property(@Window, "ALLOWFORMSTATEEVENTS")

See Also

WINDOW IOOPTIONS property, WINDOW FORMSTATECHANGED event WINDOW

MDICHILDSTATECHANGED event.

ALLOWSEQKEYRESET property

Description

Specifies if the user can reset the sequential key counter for a data-bound form by

entering a "=" character in the control bound to the key column.

Property Value

This is a boolean value. It returns TRUE$ if the user is allowed to reset the sequential

key counter, or FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

This property only applies to forms bound to a single table with a numeric single part

key. When a user enters a "=" character in the control bound to the key column they

are presented with the option of setting the sequential key counter for the table to a

new value.

By default the sequential key it stored in the “%SK%” record in the dictionary table,

but a different record may be chosen via the DEFVALUE property.

If the sequential key has not been initialized before it defaults to a value of “1”.

Example

 // Example – Determine if the current form is allowing a sequential key reset

 AllowSeqKeyReset = Get_Property(@Window, "ALLOWFSEQKEYRESET")

See Also

Common GUI DEFVALUE property, WINDOW IOOPTIONS property.

ARRANGEICONS property

Description

Specifies if an MDI Frame form automatically arranges its minimized MDI child forms.

It does not affect MDI child forms that are not minimized.

Property Value

This is a boolean value. Set to TRUE$ to if an MDI Frame automatically arranges its

minimized MDI child forms, or FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

In Windows 3.1 minimized MDI Child forms were represented as icons in the MDI

client area. From Windows 95 onwards they appear as small caption bars instead,

but the term "icons" is till used to refer to them in this context.

Minimized MDI child forms are auto-arranged under the following circumstances:

• When the MDI Frame is resized.

• When an MDI child is activated or resized.

• When this property is first set to TRUE$.

This property uses the WM_MDIICONARRANGE window message internally. Please

see the Microsoft website for more information on this message and on the topic of

Windows MDI programming.

Example

 // Example – Set the current form to auto arrange its MDI child icons.

 PrevVal = Set_Property(@Window, "ARRANGEICONS", TRUE$)

See Also

WINDOW MDIICONARRANGE method, WINDOW ARRANGEICONS event, Appendix E

– MDI Programming.

ATRECORD property

Description

Gets or sets data associated with the primary table of a data-bound form and

updates data-bound controls.

When getting the property, the data is extracted directly from the controls on the

form and merged with a cached version of the data row that was read from disk

during the READ event (i.e. the RECORD property).

When setting the ATRECORD property, the passed data row is set as per the form's

RECORD property and then the data-bound controls are automatically populated

from this. The SAVEWARN property is also set to TRUE$.

Property Value

This property is a dynamic array that represents a database row for the primary table

bound to the form. Its structure is determined by dictionary of the table.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

By default the WRITE event of a form only updates the columns in the database

table that are bound directly to controls on the form – any data columns that are

not bound to a control are ignored by the write processor. This means that you

cannot update these non-control columns using ATRECORD unless the form's

WRITEMODE property is set to "WriteEntireRow" - in this case the entire data row held

in the RECORD property is updated with the contents of the bound controls and is

then written to disk.

The intent behind the default of only updating bound controls is to prevent data

corruption in cases where different forms load different columns from the same row

at runtime. If each form updated the non-bound columns during the write process it

would be possible to overwrite new data with stale data. The WRITEMODE property

allows this safety feature to be circumvented, but it expects to be used with forms

that do not use different columns with the same data row.

(Note: This property was designed to emulate the functionality of setting the

@Record variable for a data-bound form in an Advanced Revelation application

which would automatically populate the data-bound prompts on screen.)

This property is considered deprecated in favor of the ROW property. New

applications should use ROW to work with the cached version of the data row for

more consistent and expected results when using a "single form – single row" model.

Example

 // Example - a table has five columns:
 //
 // CUST_ID (key)
 // TITLE <1>
 // FORENAME <2>
 // SURNAME <3>
 // DATE_OF_BIRTH <4>
 //
 // It is bound to a form that has the following three controls:
 //
 // EDL_CUST_ID -> CUST_ID (key)
 // EDL_FORENAME -> FORENAME
 // EDL_SURNAME -> SURNAME
 //
 // The form is loaded with record "C1234" which has the following data:
 //
 // <1> MR
 // <2> REN
 // <3> HOEK
 // <4> 65478
 //
 // Enter "STIMPSON J" in EDL_FORENAME

 AtRecord = Get_Property(@Window, "ATRECORD")

 // AtRecord contains:
 // <1> MR
 // <2> STIMPSON J
 // <3> HOEK
 // <4> 65478

 AtRecord<1> = "SIR"
 AtRecord<3> = "CAT"

 Call Set_Property_Only(@Window, "ATRECORD", AtRecord)
 Call Exec_Method(@Window, "WRITEROW")

 // If we were to look at the record stored in the table we would now see this:
 //
 // <1> MR <-- Not "SIR"!
 // <2> STIMPSON J
 // <3> CAT
 // <4> 65478
 //
 // Because the TITLE column (field <1>) is not bound to a control on the form
 // the value set by ATRECORD in field <1> ("SIR") does NOT get written unless
 // the WRITEATRECORD property is set to TRUE$.

See Also

WINDOW RECORD property, WINDOW ROW property, WINDOW SAVEWARN

property, WINDOW WRITEATRECORD property, WINDOW WRITEENTIREROW property,

WINDOW READROW method, WINDOW WRITEROW method, WINDOW READ event,

WINDOW WRITE event.

AUTOCOMPOSITED property

Description

Specifies if the form uses system double-buffering during sizing operations to achieve

smoother rendering.

Property Value

This is a boolean value. When set to TRUE$ the WS_EX_COMPOSITED extended

window style is applied to the form during a resize operation and then removed

afterwards,

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Results of using this property may vary depending on whether Windows is using the

Desktop Window Manger (DWM) for rendering. If the DWM is active (i.e. on Windows

Vista/7 running full Aero, or Windows 8 onwards) then using this property may

actually degrade the rendering operation.

Example

 // Example – set AUTOCOMPOSITED for the current form.

 Call Set_Property_Only(@Window, "AUTOCOMPOSITED", TRUE$)

See Also

Common GUI COMPOSITED property.

COMMUTERMODULE property

Description

Returns the name of a stored procedure that contains event handling code for the

form.

Property Value

This is a string value containing the name of a valid stored procedure (Note this is not

a fully qualified STPROCEXE repository ID).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

The contents of this property are used by the QuickEvent processor to call a stored

procedure to pass the event parameters onto at runtime. The QuickEvent processor

replaces the token "@COMMUTER" in the event handler definition with the stored

procedure name and then invokes it:

Example

 // Example – get the name of the current form's commuter module

 CommuterModule = Get_Property(@Window, "COMMUTERMODULE")

See Also

Appendix XXX – Event processing.

CTRLMAP property

Description

Returns a list of controls hosted by the specified form.

Property Value

This an @Fm-delimited array of fully-qualified control names.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

The list returned by this control is the list that is compiled into the form template by

the Form Designer, and subsequently used to create the form at runtime.

If controls are later added to the form at runtime by using the SYSTEM CREATE

method this list will not be updated. It can be updated "manually" by a developer

by manipulating the form's "Window Common Area" if desired.

If a control is destroyed using the SYSTEM DESTROY method there is an optional flag

that will remove the control from this list.

The list is held in the form's Window Common Area in the ControlMap@ variable

which can be accessed by using the OIWIN_COMM_INIT insert record.

Example

 // Example – get the list of controls for the current form

 CtrlMap = Get_Property(CtrlEntID, "CTRLMAP")

See Also

SYSTEM CREATE method, SYSTEM DESTROY method, SYSTEM OBJECTLIST method,

OIWIN_COMM_INIT insert record.

DESTROYFLAG property

Description

Specifies if the form is flagged for destruction during QUERYEND processing.

Property Value

This is a boolean value. When TRUE$ this means that the form has been marked for

destruction during a QUERYEND process.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

When the SYSTEM QUERYEND property returns TRUE$, forms that are destroyed will

have DESTROYFLAG set, but the forms themselves will not be destroyed.

Often, the HANDLE property is used to test if a form still exists, but if a form is closed

(by using End_Window for example) when QUERYEND is true, the HANDLE will still exist

but DESTROYFLAG will be set.

In earlier versions of OpenInsight this property was called DESTROY_FLAG. This name

is deprecated but can still be used.

Example

 // Test to see if the current form is flagged for destruction

 IsFlagged = Get_Property(@Window, "DESTROYFLAG")

See Also

Common GUI HANDLE property, SYSTEM QUERYEND property.

DPI property

Description

Returns the current DPI (dots-per-inch) settings for the specified form.

Property Value

This property is an @Fm-delimited array containing the DPI values:

<1> X (horizontal) DPI
<2> Y (vertical) DPI

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property returns the DPI for the monitor that the top-level parent form is currently

displayed on, or that the majority of the form is displayed on if using more than one

monitor. Beginning with Windows 8.1 individual monitors can have their own DPI

settings - prior to this the form DPI is always the same as the SYSTEM DPI property.

The form DPI is combined with its SCALEFACTOR property when calculating scaling

attributes.

Example

 // Get the DPI settings for the current control

 CtrlDPI = Get_Property(ctrlEntID, "DPI")

See also

Common GUI DPI property, SYSTEM DPI property, WINDOW SCALEFACTOR property,

WINDOW SCALED event, Appendix K – High-DPI Programming.

DWMANIMATION property

Description

Specifies if the form uses Desktop Window Manager (DWM) animations when being

displayed.

Property Value

This is a boolean property. If TRUE$ then DWM animations are enabled, or FALSE$ if

they are disabled.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property is only effective when Windows is using the DWM for rendering, i.e. on

Windows Vista/7 running full Aero, or Windows 8 onwards.

The property implements the DWMWA_TRANSITIONS_FORCEDISABLED attribute of the

DwmGetWindowAttribute and DwmSetWindowAttribute Windows API functions.

Please see the Microsoft website for further information on these functions.

Example

 // Example –turn off DWM animations for the current window.

 Call Set_Property_Only(@Window, "DWMANIMATION", FALSE$)

See Also

N/a.

FIRSTFOCUS property

Description

Returns the name of the first control that receives the input focus when the specified

form is created.

Property Value

This is a string value containing the fully qualified name of a control, or null if no

controls on the form could accept the input focus.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

When a form is created the Presentation Server scans through its controls in tab-

order looking for the first control that can accept the input focus. This property

returns the name of that control.

Example

 // Example – get the first control for the current form.

 FocusCtrl = Get_Property(@Window, "FIRSTFOCUS")

See Also

Common GUI FOCUS property, SYSTEM FOCUS property, WINDOW

GOTFOCUSCONTROL property, WINDOW INITIALFOCUS property.

FORMBORDERSTYLE property

Description

Gets or sets the border style of the form.

Property Value

This in integer value that specifies the appearance and behavior of a form's border.

It can be one of the following:

Value Name Description

0 None The form has no border and cannot have a caption bar or be

resized by the user.

1 Fixed The form has a thin border and cannot be resized by the user.

2 Sizeable The form has a normal border and can be resized by the user.

3 Dialog The form has a normal border but cannot be resized by the

user.

4 FixedTool The form has a normal border with a thinner caption bar but

cannot be resized by the user.

5 SizeableTool The form has a normal border with a thinner caption bar and

can be resized by the user.

Note that the "Tool" styles also have the following restrictions:

• Minimize, maximize and help buttons are not allowed.

• Tool-style forms do not appear on the Windows taskbar.

• Tool-style forms will not display an icon.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

The descriptions of the various border styles given above can vary depending on the

current Windows visual style. For example, on Windows 10 all borders are a single

pixel wide and the Tool form styles have the same caption bar height as the other

styles. The differences in earlier versions of Windows were more pronounced.

Equated constants for this property can be found in the PS_WINDOW_EQUATES insert

record.

Example

 // Example – set current form's border style to "none".
 $Insert PS_Window_Equates

 PrevStyle = Set_Property(@Window, "FORMBORDERSTYLE", PS_FORMBORDERSTYLE_NONE$)

See Also

WINDOW HELPBUTTON property, WINDOW ICON property, WINDOW

MAXIMIZEBUTTON property, WINDOW MINIMIZEBUTTON property, WINDOW

SHOWCAPTION property, WINDOW SIZINGMODE property, WINDOW SYSTEMMENU

property, WINDOW TASKBARID property.

GOTFOCUSCONTROL property

Description

Returns the last control on the form with a GOTFOCUS event handler that had the

input focus.

Property Value

This is a string value containing the fully qualified name of a control, or null if no

controls on the form with a GOTFOCUS event handler have had the input focus yet.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

N/a.

Example

 // Example – get the last control on the current form with a GOTFOCUS handler that
 // had the input focus

 GotFocusCtrl = Get_Property(@Window, "GOTFOCUSCONTROL")

See Also

Common GUI FOCUS property, SYSTEM FOCUS property, WINDOW FIRSTFOCUS,

WINDOW INITIALFOCUS property.

HELPBUTTON property

Description

Specifies if a help button is displayed on the form's caption bar.

Property Value

This is a boolean value. It returns TRUE$ if a button should be displayed, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

When the help button is clicked the cursor changes to an arrow with a question

mark. Clicking on an object with this cursor will trigger a HELP event for the object.

A help button can only be displayed if the follow criteria are met:

• The form has a caption bar.

• The form does not have a minimize or maximize button in its caption bar.

• The form does not have one of the "tool" styles set for its FORMBORDERSTYLE

property.

This property implements the WS_EX_CONTEXTHELP extended window style. Please

see the Microsoft website for more details.

Example

 // Example – Show a help button on the form's caption bar

 Call Set_Property_Only(@Window, "HELPBUTTON", TRUE$)

See Also

WINDOW FORMBORDERSTYLE property, WINDOW MAXIMIZEBUTTON property,

WINDOW MINIMIZEBUTTON property, WINDOW SHOWCAPTION property, Common

GUI HELP event.

HIDEEFFECT property

Description

Gets or sets the animation used with the HIDE method for the specified form.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 None No animation effect when hidden. This is the

default.

1 Fade The form fades until is no longer visible.

2 Slide down The form's top edge slides down to its bottom edge

until the form is no longer visible.

3 Slide up The form's bottom edge slides up to its top edge until

the form is no longer visible.

4 Slide right The form's left edge slides to its right edge until it the

form is no longer visible.

5 Slide left The form's right edge moves to its left edge until the

form is no longer visible.

6 Slide down and right The form's top-left corner slides down to its bottom-

right corner until the form is no longer visible.

7 Slide down and left The form's top-right corner slides down to the

bottom-left corner until the form is no longer visible.

8 Slide up and right The form's bottom-left corner slides up to its top-right

corner until the form is no longer visible.

9 Slide up and left The form's bottom-right corner slides up to its top-left

corner until the form is no longer visible.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

This property does not apply when used with an MDI Child form.

Equated constants for the HIDEEFFECT property value can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example - set the HIDEEFFECT to "Slide Up" and hide the form
 $Insert PS_Window_Equates

 Call Set_Property_Only(@Window, "HIDEEFFECT", PS_SHE_SLIDE_UP$)
 Call Exec_Method(@Window, "HIDE")

See Also

WINDOW SHOWEFFECT property, WINDOW TRANSLUCENCY property, WINDOW

VISIBLE property, WINDOW HIDE method, WINDOW SHOW method.

ICON property

Description

Specifies the name of the icon displayed in the form's caption bar, and if

appropriate, the Windows TaskBar. The icon is also used to access the form's System

Menu.

Property Value

This can be one of three formats:

• A path and file name of an icon (.ico) file.

• A path and file name to a resource file (such as a DLL) containing the icon,

along with its resource ID. The latter component is separated from the file

name by a “#” character.

E.g.

.\res\MyAppRes.Dll#192

.\res\MyAppRes.Dll#MYICON

• The name of a Windows system Icon:

o "APPLICATION"

o "ERROR"

o "INFORMATION"

o "QUESTION"

o "WARNING"

o "SHIELD"

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

A form must have a System Menu if it wants to display an icon on the caption bar.

Equated constants for using System Icons can be found the PS_SYSICON_EQUATES

insert record.

Example

 Declare Function Repository
 $Insert PS_SysIcon_Equates

 // Example 1 – setting an ICON property with a normal filename
 IcoFile = ".\icons\rti_ide.res\rti_test_dummy.ico"
 Call Set_Property_Only(@Window, "ICON", IcoFile)

 // Example 2 – setting an ICON property with a resource from a DLL.
 // (the icon with an ID of "1" from Oengine.dll)

 IcoFile = "oengine.dll#1"
 Call Set_Property_Only(@Window, "ICON", IcoFile)

 // Example 3 – setting an ICON property with a System Icon
 IcoFile = "WARNING"
 Call Set_Property_Only(@Window, "ICON", IcoFile)

 // Example 4 – setting an ICON property using a repository ID
 //
 // IMAGE entities always return the filename in field 1
 IcoFile = Repository("ACCESS", PS_REP_SYSICON_QUESTION$)<1>
 Call Set_Property_Only(@Window, "ICON", IcoFile)

See Also

WINDOW SHOWCAPTION property, WINDOW SYSTEMMENU property, WINDOW

TASKBARBUTTON property, WINDOW TASKBARID property, Appendix J – System Icons.

ID property

Description

Returns the current row key associated with the primary table data row in a data-

bound form.

Property Value

This property is string value containing the data row key if a row is loaded into the

form and it is successfully locked by the form. If the form has not locked the row (i.e.

it is in "View-Only" mode) then the ID property returns a null string instead.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property does not return the keys associated with secondary tables in a multi-

table form.

Example

 // Example - assume the current form has loaded a row from the database with a key
 // of "UK007" and the row has been locked successfully by the form.

 RowID = Get_Property(@Window, "ID")

 // RowID contains "UK007"

 // Example - assume the current form has loaded a row from the database with a key
 // of "UK007" and the row has NOT been locked successfully by the form.

 RowID = Get_Property(@Window, "ID")

 // RowID now contains ""

See Also

WINDOW ATRECORD property, WINDOW ROW property, WINDOW RECORD property,

WINDOW TABLE property, WINDOW READROW method, WINDOW READ event.

INITIALFOCUS property

Description

Specifies the control that receives the input focus when a form is activated.

Property Value

This is a string value containing the fully qualified name of a control, or null if no

controls on the form could accept the input focus.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property is set when a control receives the input focus and is constantly updated

as the user moves between controls on a form. This is to ensure that a user who

switches to another form is returned to the same control when the first form is

activated once more.

(Contrast this with the FIRSTFOCUS property which is only set when the form is first

created and remains constant.)

Example

 // Example – get the "initial-focus" control for the current form.

 FocusCtrl = Get_Property(@Window, "INITIALFOCUS")

See Also

Common GUI FOCUS property, SYSTEM FOCUS property, WINDOW

GOTFOCUSCONTROL property, WINDOW FIRSTFOCUS property.

INITIALPOSITION property

Description

Specifies the starting location of the specified form.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 As designed The form is displayed using the form's Left and Top

property values.

1 Center on desktop The form is displayed centered on the desktop.

2 Center on parent The form is displayed centered on its parent.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get Only No No No

Remarks

This property does not apply when used with an MDI Child form.

Equated constants for the INITIALPOSITION property value can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Get the current form's INITIALPOSITION setting

 InitPos = Get_Property(@Window, "INITIALPOSITION")

See Also

Common GUI SIZE property, Common GUI SYSTEMSIZE property, Common GUI RECT

property, Common GUI LEFT property, Common GUI TOP property, WINDOW CENTER

method.

IOOPTIONS property

Description

Specifies the data-binding options for the form.

Property Value

This value is an @Fm-delimited array of data-binding options. See each individually

named property for more information.

Field PropertyName Description

<1> Reserved N/a.

<2> LockType Specifies the type of row locking used by the form.

<3> LockCoordination Specifies if table-lock coordination is used by the form

in conjunction with record locking.

<4> AllowSelfLocks Specifies if attempts to lock rows that are already

locked by the current session are allowed.

<5> Reserved N/a.

<6> NoClearOnWrite Specifies if a form clears its contents after a successful

write operation.

<7> Reserved N/a.

<8> Reserved N/a.

<9> Reserved N/a.

<10> RequireOnWrite Specifies if "data-required" checks are performed

before a write operation.

<11> QBFReadMode Specifies if a form's READ event is triggered when

loading a data row in QBF mode.

<12> NumericCompare Specifies how comparisons for column updates are

performed during a write operation.

<13> WriteMode Specifies how data set via the ROW property is saved

during a write operation.

<14> LoadPrevAlways Specifies if the "previous data row" is updated on a

read operation as well as a write operation.

<15> SuppressSaveWarn Specifies if a data-bound form ignores the

SAVEWARN property during CLEAR and CLOSE

processing.

<16> AllowFormStateEvents Specifies if a form triggers the FORMSTATECHANGED

and MDICHILDSTATECHANGED events.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

This property is available for backwards compatibility with earlier versions of

OpenInsight and has been deprecated. From version 10 onwards each of the

options above is exposed by its own individual property and these should be used in

preference to the IOOPTIONS property.

Equates constants for the IOOPTIONS property can be found in the OIWIN_EQUATES

insert record.

Example

 // Example - set the "RequireOnWrite" option for the current form
 $Insert OIWin_Equates

 Options = Get_Property(@Window, "IOOPTIONS")

 Options<FIO_REQONWRITEONLY$> = TRUE$

 Call Set_Property_Only(@Window, "IOOPTIONS", Options)

See Also

WINDOW ALLOWSELFLOCKS property, WINDOW

ALLOWFORMSTATECHANGEDEVENTS, WINDOW LOADPREVALWAYS property,

WINDOW LOCKCOORDINATION property, WINDOW LOCKLEVEL property, WINDOW

LOCKMODE property, WINDOW NOCLEARONWRITE property, WINDOW

NUMERICCOMPARE property, WINDOW QBFREADMODE property, WINDOW

REQUIREONWRITE property, WINDOW SUPPRESSSAVEWARN property, WINDOW

WRITEMODE property.

LOADPREVALWAYS property

Description

Specifies if the form's PREVROWVAL (previous data row) property is updated during a

read operation as well as a write operation.

Property Value

This is boolean value – if TRUE$ then PREVROWVAL is updated during a read

operation otherwise it is only updated during a write operation. The default is

FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

When a row is written the system keeps a cached version of the data that was

updated in a property called PREVROWVAL. This data is then used with subsequent

calls to the READPREVROW method to populate data-bound controls with data from

the previous row. By default, the PREVROWVAL is only updated from a write

operation, but setting this property to TRUE$ ensures that it is updated from a read

operation too.

Example

 // Example – Set the current form's LOADPREVALWAYS property.

 Call Set_Property_Only(CtrlEntID, "LOADPREVALWAYS", TRUE$)

See Also

WINDOW IOOPTIONS property, WINDOW PREVROWVAL property, WINDOW

READPREVROW method, WINDOW READ event, WINDOW WRITE event.

LOCKCOORDINATION property

Description

Specifies if table-lock coordination is used by a form in conjunction with record

locking.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 Normal No table locks are used. This is the default.

1 WithTableLocks A shared table lock will be applied in concert with the

row lock. A shared table lock will conflict with any

exclusive table locks which are already on the table or

with any exclusive table locks which are attempted on

the table after the shared table lock is implicitly

applied. Table locks will always be attempted before

row locks are applied.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

Equated constants for use with the LOCKCOORDINATION property may be found in

the PS_WINDOW_EQUATES insert record.

Example

 // Example - set the LOCKCOORDINATON property to use table locks.
 $Insert PS_Window_Equates

 PrevVal = Set_Property(@Window, "LOCKCOORDINATION", PS_LKCOORD_WITHTABLE$)

See Also

WINDOW IOOPTIONS property, WINDOW LOCKLEVEL property.

LOCKTYPE property

Description

Specifies the type of row locking used by a form.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 Exclusive Exclusive locks disallow other users from gaining

exclusive or shared locks on the same rows (This is the

default option.)

When a READ event is triggered exclusive locks will be

applied to the primary table row and rows from

subsidiary tables before any read operations are

attempted.

Failure of any lock will cause a locking error to be

presented and the user will be allowed to continue in

view-only mode or to cancel the read operation

altogether.

Locks will be removed when the form data is cleared

through any mechanism, (for example, CLEAR, DELETE,

CLOSE, or QBF operation).

1 Shared This type is similar to the Exclusive type except that a

shared lock is applied instead of an exclusive lock.

A shared lock disallows other exclusive locks but allows

other shared locks to be gained against the same rows.

Write and delete operations should be disabled for this

locking option.

Shared locking is not supported on all networks – in this

case this option behaves exactly as does the Exclusive

option.

2 No Locking No locking is performed on any rows, either from the

primary or subsidiary tables.

Write and delete operations should be disabled for this

locking option.

This setting may be appropriate for View only forms or

for forms which perform custom locking beforehand.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

Equated constants for use with the LOCKTYPE property may be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example - set the LOCKTYPE property to use No Locking.
 $Insert PS_Window_Equates

 PrevVal = Set_Property(@Window, "LOCKTYPE", PS_LKCOORD_WITHTABLE$)

See Also

WINDOW IOOPTIONS property, WINDOW LOCKCOORDINATION property.

MAXIMIZEBUTTON property

Description

Specifies if a maximize button is displayed on the form's caption bar.

Property Value

This is a boolean value. It returns TRUE$ if a button should be displayed, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Clicking this button maximizes the form. When this form is maximized this button

changes to a "restore" button – clicking this returns the form to its pre-maximized size.

A maximize button can only be displayed if the follow criteria are met:

• The form has a caption bar.

• The form does not have a help button in its caption bar.

• The form does not have one of the "tool" styles set for its FORMBORDERSTYLE

property.

This property implements the WS_MAXMIZEBUTTON window style. Please see the

Microsoft website for more details.

A minimize button is always displayed with a maximize button, even if the former is

disabled (i.e. the form's MINIMIZEBUTTON property is set to FALSE$).

Example

 // Example – Show a maximize button on the form's caption bar

 Call Set_Property_Only(@Window, "MAXIMIZEBUTTON", TRUE$)

See Also

WINDOW FORMBORDERSTYLE property, WINDOW HELPBUTTON property, WINDOW

MINIMIZEBUTTON property, WINDOW SHOWCAPTION property, WINDOW VISIBLE

property.

MDIACTIVE property

Description

Activates an MDI child form or returns the name of the currently active MDI child

form for the specified MDI frame form.

Property Value

This is a string value containing the fully qualified name of an active MDI child form. If

an MDI frame form contains no MDI child forms this property returns a null string.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property applies to MDI frame forms only.

Example

 // Example - activate the CUSTOMERS MDI child form in the current MDI
 // frame form

 PrevActiveID = Set_Property(@Window, "MDIACTIVE", "CUSTOMERS")

See Also

WINDOW MDIFRAME property, WINDOW STARTMDICHILDFORM method,

Start_MDIChild stored procedure.

MDIFRAME property

Description

Returns the name of the parent MDI frame form for the specified MDI child form.

Property Value

This is a string value containing the fully qualified name of an MDI frame form. If used

with a non-MDI child form it returns a null string.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property mainly applies to MDI child forms. If used on an MDI frame form it

returns its own name, while if used on a non-MDI form it returns a null string.

Example

 // Example - get the MDI frame form for the current MDI child form

 MDIFrame = Get_Property(@Window, "MDIFRAME")

See Also

WINDOW MDIACTIVE property, WINDOW STARTMDICHILDFORM method,

Start_MDIChild stored procedure.

MINIMIZEBUTTON property

Description

Specifies if a minimize button is displayed on the form's caption bar.

Property Value

This is a boolean value. It returns TRUE$ if a button should be displayed, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Clicking this button minimize the form.

A minimize button can only be displayed if the follow criteria are met:

• The form has a caption bar.

• The form does not have a help button in its caption bar.

• The form does not have one of the "tool" styles set for its FORMBORDERSTYLE

property.

This property implements the WS_MINIMIZEBUTTON window style. Please see the

Microsoft website for more details.

A maximize button is always displayed with a minimize button, even if the former is

disabled (i.e. the form's MAXIMIZEBUTTON property is set to FALSE$).

Example

 // Example – Show a minimize button on the form's caption bar

 Call Set_Property_Only(@Window, "MINIMIZEBUTTON", TRUE$)

See Also

WINDOW FORMBORDERSTYLE property, WINDOW HELPBUTTON property, WINDOW

MAXIMIZEBUTTON property, WINDOW SHOWCAPTION property, WINDOW VISIBLE

property.

MULTIINSTANCE property

Description

Specifies if multiple instances of the same form may be executed in the same session

at runtime.

Property Value

This is a boolean value. It returns TRUE$ if the multiple instances are allowed, or

FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No No

Remarks

N/a.

Example

 // Example – Determine if the current form is multi-instance.

 IsMulti = Get_Property(@Window, "MULTIINSTANCE")

See Also

WINDOW STARTFORM method, WINDOW STARTMDICHILDFORM method.

NEWROW property

Description

Returns TRUE$ if the specified data-bound form has loaded a new (blank) data row.

Property Value

This is a boolean value. It returns TRUE$ if the form has loaded a new row, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Example – Determine if the current form is working with a new data row:

 IsNewRow = Get_Property(@Window, "NEWROW")

See Also

WINDOW ID property, WINDOW ROW property, WINDOW READROW method,

WINDOW READ event.

NOCLEARONWRITE property

Description

Specifies if a data bound form clears its contents after a successful write operation.

Property Value

This is a boolean value. It returns TRUE$ if the form keeps its contents after a

successful write operation, or FALSE$ (the default) if it clears them,

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

N/a.

Example

 // Example – Determine if the current form is set to clear after a write

 IsClearForm = Not(Get_Property(@Window, "NOCLEARONWRITE"))

See Also

WINDOW IOOPTIONS property, WINDOW WRITEROW method, WINDOW CLEAR

event, WINDOW WRITE event.

NUMERICCOMPARE property

Description

Specifies the type of comparison the form write operation uses to determine if a

column needs updating.

Property Value

This is a boolean value. It returns FALSE$ (the default) if the form always uses a string

comparison operation when scanning for changed columns, or TRUE$ if it can use a

numeric one where appropriate.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

When a form executes a write operation it compares the data in each column

bound to a control with the version currently on disk to see if an update is required.

In early versions of OpenInsight this was performed as a simple equality test which

could lead to some issues if the value "0" was compared to a null value (they would

appear equal to the simple logical test, which is probably not the right answer).

Later versions of OpenInsight switched to forcing a full string comparison instead so

that the tests were more accurate. As a result of this the NUMERICCOMPARE

property was introduced to allow for backwards compatibility.

Example

 // Example – Set the current form to use the simple numeric compare

 Call Set_Property_Only(@Window, "NUMERICCOMPARE", TRUE$)

See Also

WINDOW IOOPTIONS property, WINDOW WRITEROW method, WINDOW WRITE event.

OVERLAYICON property

Description

Specifies a small icon that may be used to overlay the normal icon on a form's

taskbar button.

Property Value

This is string value containing the name and path of an icon file.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

If you wish to use an icon stored in the OpenInsight repository then use the Repository

stored procedure along with the ACCESS method to return the icon details. The file

and path name for the icon file is specified in the first field.

Note that an overlay icon may only be set once Windows has created a taskbar

button for the form, so it is necessary to check if the TASKBARBUTTON property returns

TRUE$ first.

Example

 // Example - set an overlay icon for the current form using the
 // file name and path from a repository entity
 Declare Function Repository

 IconRec = Repository("ACCESS", @AppID : "*IMAGE*ICO*OI10")
 IconFile = IconRec<1>

 Call Set_Property_Only(@Window, "OVERLAYICON", IconFile)

See Also

WINDOW ICON property, WINDOW TASKBARBUTTON property, WINDOW TASKBARID

property.

OWNER property

Description

Gets or sets the owner of the specified form.

Property Value

This is string value containing the name of a running top-level form.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

When a form is created one of the parameters passed is the name of a parent form,

which becomes the "owner" of the new form. When a form is owned by another

form it exhibits the following characteristics:

• An owned form is always above its owner in the z-order.

• The system automatically destroys an owned form when its owner is

destroyed.

• An owned form is hidden when its owner is minimized.

• An owned form does not have a button on the taskbar.

With Get_Property the OWNER and the PARENT property usually return the same

value. However, it is not possible to change a form's owner with the PARENT

property or the SETPARENT method because that will make it a child object which

means it will no longer be a top-level form. Only the OWNER property can change a

form's owner while maintaining its top-level state.

Example

 // Example - Set the owner of a the current form to MAIN_APP_FORM

 Call Set_Property_Only(@Window, "OWNER", "MAIN_APP_FORM")

See Also

Common GUI CHILDOBJECT property, Common GUI PARENT property, Common GUI

SETPARENT method, WINDOW STARTFORM method, WINDOW SHOWDIALOG method,

WINDOW SHOWMESSAGE method, WINDOW SHOWPOPUP method.

PLACEMENTDATA property

Description

Gets or sets the show state and the restored, minimized, and maximized positions of

the specified form.

Property Value

This value is an @Fm-delmited array of placement information:

Field PropertyName Description

<1> ShowCmd Specifies the show state of the form – this is equivalent

to its VISIBLE property.

<2> NormalPosition Specifies size of the form in its normal position:

 <0,1> Left
 <0,2> Top
 <0,3> Width
 <0,4> Height

<3> MinPosition Specifies the coordinates of the form's upper-left corner

when minimized. This is an @Vm-delimited array:

 <0,1> Left
 <0,2> Top

<4> MaxPosition Specifies the coordinates of the form's upper-left corner

when maximized. This is an @Vm-delimited array:

 <0,1> Left
 <0,2> Top

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No Yes No

Remarks

If the form is a top-level form that does not have a "Tool"-style FORMBORDERSTYLE

property, then the coordinates in the structure above are in workspace coordinates,

otherwise these are in screen coordinates. Therefore these coordinates should only

be used with the PLACEMENTDATA property and not with the normal SIZE property.

(Workspace coordinates differ from screen coordinates in that they take the

locations and sizes of application toolbars (including the taskbar) into account.

Workspace coordinate (0,0) is the upper-left corner of the workspace area, the area

of the screen not being used by application toolbars).

For more information on this property please refer to the Windows documentation

regarding the GetWindowPlacement and SetWindowPlacement on the Microsoft

website.

Equates constants for the PLACEMENTDATA property can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example - set the "RequireOnWrite" option for the current form
 $Insert OIWin_Equates

 Options = Get_Property(@Window, "IOOPTIONS")

 Options<FIO_REQONWRITEONLY$> = TRUE$

 Call Set_Property_Only(@Window, "IOOPTIONS", Options)

See Also

Common GUI MONITOR property, Common GUI RECT property, Common GUI SIZE

property, SYSTEM MONITORLIST property, WINDOW VISIBLE property.

PREVROWVAL property

Description

Returns the values that were held in the specified form's controls for a previously

loaded data row.

Property Value

This property is a dynamic array that contains the data extracted from the form's

controls from a previously loaded row (The format of the array is determined by the

"row-map" which is a structure built by the form compiler at design-time).

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

By default, when data is saved in a form, a copy of the data from the data-bound

controls is cached and exposed via the PREVROWVAL property. This data may later

be loaded back into the controls by using the form's READPREVROW method,

thereby allowing easy duplication of previously entered values into the form's current

data row.

If the form's LOADPREVALWAYS property is set to TRUE$ then the PREVROWVAL is set

when a row is read into the form as well as when it has been saved.

(Note: This property was designed to emulate the "Alt-C" functionality for a data-

bound form as found in Advanced Revelation applications - this feature would

automatically populate the data-bound prompts on screen from previously loaded

data).

Example

 // Example - get the current form's previously saved data in "row-map" format.

 PrevRow = Get_Property(@Window, "PREVROWVAL")

See Also

WINDOW LOADPREVALWAYS property, WINDOW READPREVROW method, WINDOW

READROW method, WINDOW WRITEROW method, WINDOW READ event, WINDOW

WRITE event.

PROGRESSSTATE property

Description

Sets the state of the current progress information on the specified form's taskbar

button.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 No Progress Removes progress information from the taskbar button.

1 Normal Sets the color of the taskbar button progress

information to Green.

2 Error Sets the color of the taskbar button progress

information to Red.

3 Paused Sets the color of the taskbar button progress

information to Amber.

4 Indeterminate Sets the taskbar button progress information to a green

marquee effect.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Set No No No

Remarks

If the form does not have its own taskbar button and is grouped with other forms, the

taskbar button for the group displays the progress information.

Example

 // Example - simple loop to show progress information on the taskbar
 $Insert PS_Window_Equates

 XCount = 100
 For X = 1 To XCount

 // Update the Progress value
 Call Set_Property_Only(@Window, "PROGRESSVALUE", X : @Fm : XCount)

 // Call a function
 Call SomeFunction()

 // If there's an error then set the progress state to an error state
 If Get_Status(ErrorText) Then
 Call Set_Property_Only(@Window, "PROGRESSSTATE", PS_PGS_ERROR$)

 // Handle Error and assume fixed so set the state back to normal
 Call Set_Property_Only(@Window, "PROGRESSSTATE", PS_PGS_NORMAL$)

 End

 Next

 // Remove the progress information
 Call Set_Property_Only(@Window, "PROGRESSVALUE", 0 : @fm : 0)

See Also

PROGRESSBAR SYNCTASKBAR property, WINDOW PROGRESSVALUE property,

WINDOW TASKBARBUTTON property, WINDOW TASKBARID property.

PROGRESSVALUE property

Description

Displays progress information on the specified form's taskbar button.

Property Value

This is an @Fm delimited array containing progress information:

Field Name Description

<1> CurrrentValue This is an integer specifying the current progress position. It

is used with the MaximumValue field to calculate a

percentage value which is then used to display the width

of progress indicator on the taskbar button.

It cannot be greater than the MaximumValue.

<2> MaximumValue This is an integer specifying the maximum progress value. It

is used with the CurrentValue field to calculate a

percentage value which is then used to display the width

of the progress indicator on the taskbar button.

It cannot be less than the CurrentValue.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Set No No No

Remarks

Setting the CurrentValue and MaximumValue fields to 0 removes the progress information

from the taskbar button.

If the form does not have its own taskbar button and is grouped with other forms, the

taskbar button for the group displays the progress information.

Example

 // Example - simple loop to show progress information on the taskbar
 $Insert PS_Window_Equates

 XCount = 100
 For X = 1 To XCount

 // Update the Progress value
 Call Set_Property_Only(@Window, "PROGRESSVALUE", X : @Fm : XCount)

 // Call a function
 Call SomeFunction()

 // If there's an error then set the progress state to an error state
 If Get_Status(ErrorText) Then
 Call Set_Property_Only(@Window, "PROGRESSSTATE", PS_PGS_ERROR$)

 // Handle Error and assume fixed so set the state back to normal
 Call Set_Property_Only(@Window, "PROGRESSSTATE", PS_PGS_NORMAL$)

 End

 Next

 // Remove the progress information
 Call Set_Property_Only(@Window, "PROGRESSVALUE", 0 : @fm : 0)

See Also

PROGRESSBAR SYNCTASKBAR property, WINDOW PROGRESSSTATE property, WINDOW

TASKBARBUTTON property, WINDOW TASKBARID property.

QBFLIST property

Description

Gets or sets the QBF result list, i.e. the array of data keys used by the current QBF

(Query-By-Form) session for the specified form

Property Value

This is an @Fm-delimited list of keys to use with the current QBF session.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

When setting the QBFLIST property the first key in the list is automatically loaded into

the form via the SHOWQBFFIRST method. If the QBF session has not been initialized

via the QBFINITSESSION method, this is called internally first.

Setting an empty list will close the QBF session via the QBFCLOSESESSION method.

Example

 // Example - select data from a table and load the list of keys as a QBFLIST
 $Insert RList_Equates

 Call RList("SELECT CUSTOMERS WITH STATE EQ 'CA'", TARGET_ACTIVELIST$, "", "", "")

 QBFKeys = ""
 Eof = FALSE$
 Loop
 ReadNext Key Else Eof = TRUE$
 Until Eof
 QBFKeys := Key : @fm
 Repeat
 QBFKeys[-1,1] = ""

 Call Set_Property_Only(@Window, "QBFLIST", QBFList)

See Also

WINDOW QBFSHOWFIRST method, WINDOW QBFCLOSESESSION method, WINDOW

QBFSHOWTABLE method, WINDOW QBFFIRST event, WINDOW QBFCLOSE event.

QBFPOS property

Description

Gets or sets the index of the row to display when the specified form has a valid QBF

result list (QBFLIST property) loaded.

Property Value

This is an integer value that must contain a valid position index for the list of keys in

the QBFLIST property.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

Setting this property triggers the form's QBFABS event.

Example

 // Example - Assume we have been given a key that is in the QBFLIST
 // and we wish to load it into the form.

 QBFList = Get_Property(@Window, "QBFLIST")

 Locate CustKey In QBFLIst Using @Fm Setting Pos Then
 Call Set_Property_Only(@Window, "QBFPOS", Pos)
 End

See Also

WINDOW QBFSHOWFIRST method, QBFSHOWLAST method, WINDOW QBFSHOWNEXT

method, WINDOW QBFSHOWPREV method, WINDOW QBFSHOWTABLE method,

WINDOW QBFABS event.

QBFSTATUS property

Description

Returns the status of the QBF session for the specified form.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 QBFInactive No QBF session is active for the form.

1 QBFInitialize The form is ready to accept query data into its controls.

2 QBFActive A QBF query has been executed and the QBF result list

(QBFLIST property) has been populated.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

Equated constants for the QBF status values can be found in the RTI_QBF_EQUATES

insert record.

Example

 // Example - Get the QBFSTATUS so we have set the UI controls accordingly
 $Insert RTI_QBF_Equates

 QBFStatus = Get_Property(@Window, "QBFSTATUS")

 Begin Case
 Case (QBFStatus = QBFSTAT_OFF$)
 // Disable all QBF buttons except the QBF init session

 Case (QBFStatus = QBFSTAT_INIT$)
 // Use is entering a query - enable the QBF close session and
 // run query buttons, but all other QBF buttons are disabled.

 Case (QBFStatus == QBFSTAT_ACTIVE$)
 // A QBFLIST has been loaded - enable all QBF buttons except
 // the QBF init session and run query

 End Case

See Also

WINDOW QBFCLOSESESSION method, WINDOW QBFINITSESSION method, WINDOW

QBFRUNQUERY method, WINDOW QBFCLOSE event, WINDOW QBFINIT event,

WINDOW QBFRUN event.

QBFREADMODE property

Description

Specifies if and how a form triggers the READ event when loading data during QBF

processing.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 OnlyQBF The custom QBF form loading process is used. A READ

event is not triggered. This is the default for backwards

compatibility.

1 QBFThenRead The standard QBF form-load process is used, followed

by a READ event. This causes the data to be read and

loaded twice.

This is option is available for backwards compatibility

purposes only and should be considered deprecated.

2 OnlyRead The standard READ event process is used to load rows

during QBF processing.

This is the preferred option.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

By default (and to preserve backwards compatibility) the QBF events that load data

into controls (QBFFIRST, QBFNEXT, QBFPREV, QBFLAST, QBFABS) do not use the normal

READ event handler to accomplish this because they have their own internal

methods (see the OnlyQBF option above). This means that any custom READ event

processing required by the form when loading data will not be executed.

In previous versions of OpenInsight it was possible to set a flag in the form's

IOOPTIONS property to trigger a READ event after the QBF load (this is exposed as

the QBFThenRead option above), but this not an optimal solution because the data

in the form will be loaded twice: once in the QBF event, and once in the READ event

which, of course, is not very efficient.

This version of OpenInsight introduces the OnlyRead option instead, which means

that the QBF processor uses the standard READ process to load data records,

thereby ensuring that any custom pre/post READ event processing will executed.

This is the preferred option and should be adopted where possible.

Example

 // Example – Determine if the current form is set to trigger a READ event after QBF
 // Loading.

 QBFReadMode = Get_Property(@Window, "QBFREADMODE")

See Also

WINDOW IOOPTIONS property, WINDOW QBFABS event, WINDOW QBFFIRST event,

WINDOW QBFNEXT event, WINDOW QBFPREV event, WINDOW QBFLAST event,

WINDOW READ event.

RECORD property

Description

Gets or sets the cached copy of the data row associated with the specified form.

Property Value

This property is a dynamic array that represents a database row for the primary table

bound to the form. Its structure is determined by dictionary of the table.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

When the data for the form's primary table is read at runtime a cached copy is

stored in memory. This cached copy is updated from the controls as the user

interacts with the form (usually during LOSTFOCUS and POSCHANGED events). The

cached copy is then used to populate the @Record global variable before any

CALCULATE events are executed on the controls in the form.

Setting this property (and therefore the cached copy) will not refresh the data held

in the data-bound controls, nor will it allow an update of any non-control bound

columns when the form's WRITE event is executed. The ROW property should be

used for this purpose instead.

This property is considered deprecated in favor of the ROW property. New

applications should use ROW to work with the cached version of the data row for

more consistent and expected results when using a "single form – single row" model.

Example

 // RECORD example - update the cached version of the data row – note this will only
 // affect subsequent CALCULATE events - consider using the ROW property instead to
 // see changes in the controls and updates written to disk.

 MyRecord<1> = "Mr"
 PrevVal = Set_Property(@Window, "RECORD". MyRecord)

See Also

WINDOW ATRECORD property, WINDOW ROW property, WINDOW WRITEMODE

property.

REQUIREONWRITE property

Description

Specifies when a form performs "required data" checks.

Property Value

This is a boolean value. When set to TRUE$ the form only performs "required data"

checks just prior to a write operation and blocks the write if any controls have

missing data. When set to FALSE$ (the default) the checks are performed as the user

moves between controls on the form (via the LOSTFOCUS and POSCHANGED

events).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

N/a.

Example

 // Example – Determine if the current form is set to check for missing data
 // just before a write operation

 IsRequiredOnWrite = Get_Property(@Window, "REQUIREONWRITE")

See Also

Common GUI REQUIRED property, WINDOW IOOPTIONS property, WINDOW

WRITEROW method, WINDOW WRITE event.

RESTORESIZE property

Description

Returns the position and size of the specified form in its non-maximized/minimized

state.

Property Value

This property value is an @Fm-delimited array of integer coordinates in DIPs (Device

Independent Pixels):

<1> Left
<2> Top
<3> Width
<4> Height

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

Each form keeps a copy of the "restore size", which is its position and size before it

was maximized or minimized.

This value is updated when the form is resized or moved when not minimizing or

maximizing.

This value is always returned as Device Independent Pixels (DIPs).

Example

 // Get the RESTORESIZE of the current form

 RestoreSize = Get_Property(@Window, "RESTORESIZE")

See also

Common GUI RECT property, Common GUI SIZE property, WINDOW VISIBLE property,

WINDOW SIZE event.

ROW property

Description

Gets or sets data associated with the primary table for the specified data-bound

form and updates its data-bound controls.

When getting the property, the data is extracted directly from the controls on the

form and merged with a cached version of the data row that was read from disk

during the READ event.

When setting the ROW property, the cached copy of the form's data row is replaced

and then the data-bound controls are automatically populated from that. The

form's WRITEMODE property is automatically set to "WriteEntireRow" and the

SAVEWARN property is also set to TRUE$.

Property Value

This property is a dynamic array that represents a database row for the primary table

bound to the form. Its structure is determined by dictionary of the table.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

By default the WRITE event of a form only updates the columns in the database

table that are bound directly to controls on the form – any data columns that are

not bound to a control are ignored by the write processor. The intent behind this

default behavior is to prevent data corruption in cases where different forms load

different columns from the same row at runtime. If each form updated the non-

bound columns during the write process it would be possible to overwrite new data

with stale data.

However, this "multiple forms per single row" model is not as common as a "single

form – single row" model, and there is an expectation that when setting the contents

of the entire row at runtime the following is true:

• Any data-bound controls are updated from the contents of the new row.

• Any columns not bound to controls will still be written back to disk.

The ROW property fulfills both expectations in a single operation, whereas previous

versions of OpenInsight would need to use the ATRECORD property and the

WRITEATRECORD properties together.

(This emulates the functionality of setting the @Record variable for a data-bound

form in an Advanced Revelation application which would automatically populate

the data-bound prompts on screen.)

Example

 // Example - a table has five columns:
 //
 // CUST_ID (key)
 // TITLE <1>
 // FORENAME <2>
 // SURNAME <3>
 // DATE_OF_BIRTH <4>
 //
 // It is bound to a form that has the following three controls:
 //
 // EDL_CUST_ID -> CUST_ID (key)
 // EDL_FORENAME -> FORENAME
 // EDL_SURNAME -> SURNAME
 //
 // The form is loaded with record "C1234" which has the following data:
 //
 // <1> MR
 // <2> REN
 // <3> HOEK
 // <4> 65478
 //
 // Enter "STIMPSON J" in EDL_FORENAME

 Row = Get_Property(@Window, "ROW")

 // Row contains:
 // <1> MR
 // <2> STIMPSON J
 // <3> HOEK
 // <4> 65478

 Row<1> = "SIR"
 Row<3> = "CAT"

 Call Set_Property_Only(@Window, "ROW", Row)
 Call Exec_Method(@Window, "WRITEROW")

 // If we were to look at the record stored in the table we would now see this:
 //
 // <1> SIR <-- Not bound to a control but still updated
 // <2> STIMPSON J
 // <3> CAT
 // <4> 65478
 //
 // Because the ROW property automatically sets the WRITEMODE property to
 // "WriteEntireRow" the TITLE column (field <1>) is written back even though
 // it is not bound to a control on the form.

See Also

WINDOW ATRECORD property, WINDOW RECORD property, WINDOW SAVEWARN

property, WINDOW WRITEMODE property, WINDOW READROW method, WINDOW

WRITEROW method, WINDOW READ event, WINDOW WRITE event.

ROWLOCKED property

Description

Returns TRUE$ if the specified data-bound form has loaded a data row and has

locked it for update.

Property Value

This is a boolean value. It returns TRUE$ if the form has locked a data row for update,

or FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Example – Determine if the current form has a locked row

 IsLocked = Get_Property(@Window, "ROWLOCKED")

See Also

WINDOW ID property, WINDOW LOCKCOORDINATION property, WINDOW LOCKTYPE

property, WINDOW ROW property, WINDOW READROW method, WINDOW READ

event.

SAVEWARN property

Description

Specifies if a data-bound form contains changed data that has not been saved.

This property is checked by the form's default CLEAR and CLOSE event handlers to

decide if a warning message should be displayed to the user that changes will be

lost unless the data is saved first.

Property Value

This is a boolean value. It is set to TRUE$ when data contained in the form has been

changed from when it was originally loaded. It returns FALSE$ if no changes have

been made.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

By default, the SAVEWARN property is updated during the following events:

• It is set to FALSE$ after data has been read and loaded into the form's

controls.

• It is set to TRUE$ during a data-bound control's LOSTFOCUS event when the

user has changed data in the control.

• It is set to TRUE$ during a data-bound EditTable control's POSCHANGED event

when the user has changed data in the control.

• It is set to TRUE$ when the DEFPROP property is used to change data in a

data-bound control.

To ensure that the SAVEWARN property is updated properly, both the form's CLEAR

and CLOSE events trigger a LOSTFOCUS event on the current control before they

decide if a warning message needs to be shown to the user.

Setting the SAVEWARN property triggers the form's SYSMSG event with a

"SAVEWARNINFO" code (21) to allow applications to track when this has been set.

The SetDebugger stored procedure may also be used as a debugging tool to track

when SAVEWARN is set.

Example

 // Example – Determine if data in the current form has changed

 IsChanged = Get_Property(@Window, "SAVEWARN")

See Also

Common GUI DEFPROP property, WINDOW SUPPRESSSAVEWARN property, Common

GUI LOSTFOCUS event, EDITTABLE POSCHANGED event, WINDOW CLEAR event,

WINDOW CLOSE event, WINDOW SYSMSG event, SetDebugger stored procedure.

SCALEFACTOR property

Description

Specifies a custom scaling value for a form, allowing it to appear larger or smaller

than normal.

Property Value

This value is an @Fm-delimited array of scale factor attributes:

Field Name Description

<1> ScaleFactor This is a number that specifies how much to scale the form

by. A value of 1 means that the form has no custom scaling

applied, a value of 1.5 scales the form to one-and-a-half

times its normal size and so on.

• This value cannot be set at design time.

• This value can be set on its own at runtime without

having to specify the other fields.

Comparison of forms with a SCALEFACTOR of

1.0 and 1.7

Comparison of forms with a SCALEFACTOR

of 0.5 and 1.0

<2> MinScaleFactor This specifies the minimum value that the ScaleFactor can be

set to. By default it is set to “0.5”, and can be a value

between "0.1" and "1.0" inclusive.

<3> MaxScaleFactor This specifies the maximum value that the ScaleFactor can

be set to. By default it is set to “5.0", and can be a value

between "1.0" and "5.0" inclusive.

<4> ScaleFactor

Increment

If this field is set to a value other than 0 (the default) it allows

the ScaleFactor to be adjusted via the Mouse-wheel /Ctrl-

key combination, or with a “pinch-zoom” gesture if running

with a touch screen. The increment value controls the rate at

which the form grows or shrinks.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

The ScaleFactor is applied after any scaling is applied for the monitor DPI. For

example, if the form runs on a 144 DPI monitor (150%) and has a ScaleFactor of 2

applied the actual scaling factor used is 3.0 (1.5 x 2.0).

Note that the minimum and maximum sizes that a form can be rescaled to is

restricted by the minimum and maximum form sizes as defined by Windows. As a

general rule this size is usually slightly larger than the size of the entire desktop across

all monitors (See the GetSystemMetrics() Windows API function on the Microsoft

website for more details, specifically with reference to the SM_CXMAXTRACK,

SM_CXMINTRACK, SM_CYMAXTRACK, and SM_CYMINTRACK indexes). This restriction

can, however, override this behaviour if the TRACKINGSIZE property is adjusted for

the form, specifying values large enough to handle the desired scaling range.

Equates constants for the SCALEFACTOR property can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example - Set the scaling factor of the current form - the min/max/inc
 // members can be ignored if they are unchanged.

 Call Set_Property_Only(@Window, "SCALEFACTOR", 2)

 // Example - Turn on mouse-wheel/pinch-zoom scaling for the current form
 $Insert PS_Window_Equates

 ScaleFactor = Get_Property(@Window, "SCALEFACTOR")
 ScaleFactor<PS_SCF_POS_INCREMENT$> = 0.1
 Call Set_Property_Only(@Window, "SCALEFACTOR", ScaleFactor)

See Also

SYSTEM DPI property, WINDOW DPI property, WINDOW TRACKINGSIZE property,

WINDOW SCALED event, Appendix K – High-DPI Programming.

SCALEUNITS property

Description

Specifies how size and position coordinates are interpreted by a form. The scale

units are a setting that determines how coordinates used in properties, methods and

events are interpreted – either as DIPs (Device Independent Pixels) or as actual

pixels.

Property Value

This property is a numeric value representing the current scale units used for getting

and setting scaled properties for the object. It can be one of the following values:

Value Description

0 Use DIPs (the default).

1 Use pixels.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

All child controls on a form use the same SCALEUNITS value.

Equated constants for use with the SCALEUNITS property can be found in the

PS_EQUATES insert record.

Example

 // Example - Set the current form's SCALEUNITS to pixels while it is
 // positioned and reset them afterwards
 $Insert Ps_Equates

 OrigScaleUnits = Set_Property(@Window, "SCALEUNITS", PS_SCU_PIXELS$)

 Call Set_Property_Only(@Window, "SIZE", NewSizeInPixels)

 Call Set_Property_Only(@Window, "SCALEUNITS", OrigScaleUnits)

See also

All properties marked as "Scaled", Common GUI SCALEUNITS property, Appendix K –

High-DPI Programming.

SHOWCAPTION property

Description

Specifies if a form displays a caption bar.

Property Value

This is a boolean value. It returns TRUE$ if the caption bar should be displayed, or

FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

This property implements the WS_CAPTION window style. Please see the Microsoft

website for more details.

Example

 // Example – Remove the current form's caption bar

 Call Set_Property_Only(@Window, "SHOWCAPTION", FALSE$)

See Also

WINDOW FORMBORDERSTYLE property, WINDOW HELPBUTTON property, WINDOW

MAXIMIZEBUTTON property, WINDOW MINIMIZEBUTTON property, WINDOW VISIBLE

property.

Form with caption bar Form without caption bar

SHOWEFFECT property

Description

Gets or sets the animation used with the SHOW method for the specified form.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 None No animation effect when shown. This is the default.

1 Fade The form fades in until it is fully visible.

2 Slide down The form's bottom edge slides down from its top

edge until the form is fully visible.

3 Slide up The form's top edge slides up from its bottom edge

until the form is fully visible.

4 Slide right The form's right edge slides out from its left edge until

it the form is fully visible.

5 Slide left The form's left edge slides out from its right edge until

the form is fully visible.

6 Slide down and right The form's bottom-right corner slides down from its

top-left corner until the form is fully visible.

7 Slide down and left The form's bottom-left corner slides down from its

top-right corner until the form is fully visible.

8 Slide up and right The form's top-right corner slides up from its bottom-

left corner until the form is fully visible.

9 Slide up and left The form's top-left corner slides up from its bottom-

right corner until the form is fully visible.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

This property does not apply when used with an MDI Child form.

Equated constants for the SHOWEFFECT property value can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example - set the SHOWEFFECT to "Slide Down" and show the current form
 $Insert PS_Window_Equates

 Call Set_Property_Only(@Window, "SHOWEFFECT", PS_SHE_SLIDE_DOWN$)
 Call Exec_Method(@Window, "SHOW")

See Also

WINDOW HIDEEFFECT property, WINDOW TRANSLUCENCY property, WINDOW VISIBLE

property, WINDOW HIDE method, WINDOW SHOW method.

SIZINGMODE property

Description

Specifies if a form can be resized with the mouse. Usually the FORMBORDERSTYLE

property determines if the mouse can be used to resize a form. The SIZINGMODE

property may be used to override this behaviour.

Property Value

This in integer value that may be one of the following values:

Value Name Description

0 Default Resizing the form is controlled by the FORMBORDERSTYLE

property.

1 Always The form may always be resized with the mouse.

2 Never The form cannot be resized with the mouse.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Equated constants for this property can be found in the PS_WINDOW_EQUATES insert

record.

Example

 // Example – set current form's SIZINGMODE property to "Never".
 $Insert PS_Window_Equates

 PrevVal = Set_Property(@Window, "SIZINGMODE", PS_SIZINGMODE_NEVER$)

See Also

WINDOW FORMBORDERSTYLE property.

STATUSLINE property

Description

Identifies the control that receives "status" messages from stored procedures when

the specified form is active. Status messages are text strings sent to the Presentation

Server via the Send_Info stored procedure when code is executed in event context.

Property Value

This is string value containing the name of a valid control instance. The control's TEXT

property is updated with the status message.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

When processing a status message the Presentation Server first attempts to use the

nominated STATUSLINE control on the active form. If this is not possible it then

attempts to use the last valid STATUSLINE control from a previously active form. If no

STATUSLINE control is available the message is sent to the results text box in the

System Monitor instead.

Example

 // Example set the current form's TXT_STATUS STATIC control to receive status
 // messages from the Send_info stored procedure.

 Call Set_Property_Only(@Window, "STATUSLINE", @Window : ".TXT_STATUS")

See Also

Common GUI TEXT property, SYSTEM RECEIVER property, System Monitor chapter,

Send_Info stored procedure.

STYLESHEET property

Description

Specifies the name of a form to use as a "styling template" when adding controls to

a form at design-time.

When a new control is added to a form at design time the stylesheet form is

scanned to see if it contains a control with the same type. If so, the following

properties are duplicated for the new control:

• BACKCOLOR

• FORECOLOR

• FONT

• HEIGHT

• WIDTH

Property Value

This is string value containing the name of a valid form.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set N/a No No Yes

Remarks

N/a.

Example

N/a.

See Also

N/a.

SUPPRESSSAVEWARN property

Description

Specifies if a data-bound form checks the SAVEWARN property to see if data has

changed before clearing its contents or closing.

Property Value

This is a boolean value. When set to TRUE$ the form will not warn the user about

unsaved changes in data-bound controls when it is cleared or closed. When set the

FALSE$ (the default) then the SAVEWARN property will be processed as normal.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

Setting this property to TRUE$ allows a form to be closed unconditionally.

Example

 // Example – Determine if the current form is set to check for unsaved changes
 // just before its contents are cleared or it is closed.

 NoSaveWarning = Get_Property(@Window, "SUPPRESSSAVEWARN")

See Also

WINDOW IOOPTIONS property, WINDOW SAVEWARN property, WINDOW CLEAR

event, WINDOW CLOSE event, WINDOW SYSMSG event.

SYSTEMMENU property

Description

Specifies if a "System Menu" is allowed for the specified form. A System Menu is the

default menu normally added to a form to allow some basic windowing operations:

Property Value

This is a boolean value. It returns TRUE$ if the System Menu should be allowed, or

FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

A form must have a System Menu if it wants to display an icon on the caption bar.

At runtime the System Menu can be activated by clicking the form's icon on the left

side of the caption bar. If the form does not have a caption bar or an icon the

System Menu may still be activated by using the "Alt+Space" hot-key combination.

This property implements the WS_SYSTEMMENU window style. Please see the

Microsoft website for more details.

Example

 // Example – Ensure that the current form has a System Menu

 Call Set_Property_Only(@Window, "SYSTEMMENU", TRUE$)

See Also

WINDOW FORMBORDERSTYLE property, WINDOW ICON property, WINDOW

SHOWCAPTION property.

TABLE property

Description

Returns the name of the primary table that specified the form is bound to.

Property Value

This property value returns the name of the primary table if any controls on the form

are data-bound, otherwise it returns null.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Example – The primary table that the form is bound to

 TableList = Get_Property(CtrlEntID, "TABLE")

See Also

WINDOW ATRECORD property, WINDOW ID property, WINDOW ROW property,

WINDOW RECORD property, WINDOW READROW method, WINDOW READ event.

TASKBARBUTTON property

Description

Returns a flag denoting if Windows has created a taskbar button for the specified

form.

Property Value

This is a boolean value. It returns TRUE$ if Windows has created a taskbar button for

the form, or FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

There is usually a short delay between a form being created and Windows adding a

button for it on the taskbar, and it sends a notification to the form once the button

has been added. At this point it is then possible to set an OVERLAYICON if desired.

Example

 // Example - set an overlay icon, but check if the taskbar button has been created

 Loop
 HasButton = Get_Property(@Window, "TASKBARBUTTON")
 Until HasButton
 Call Yield(TRUE$)
 Repeat

 Call Set_Property_Only(@Window, "OVERLAYCON", IconFile)

See Also

PROGRESSBAR SYNCTASKBAR property, WINDOW ICON property, WINDOW

OVERLAYICON property, WINDOW TASKBARID property.

TASKBARID property

Description

Specifies a text string used to group or ungroup forms on the Windows taskbar. By

default, Windows groups all forms belonging to the same process together under

same taskbar button like so (shown here grouped under the main OpenInsight

process):

This behavior can be changed for a form by setting the TASKBARID property to a

new text value - this forces Windows to create a new button on the taskbar instead.

(All forms that share this value will be grouped together):

Property Value

This is a string value – when it is not null any forms sharing the same value will be

grouped under the same taskbar button. When it is null the forms will be grouped

under a default taskbar button.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

This property uses the Windows SHGetPropertyStoreForWindow function to set a form-

specific AppUserModelID internally. More for information on this and programming

the Windows taskbar please see the relevant documentation on the Microsoft

website.

Example

 // Example - set the TASKBARID for the current form so it appears
 // under its own button on the TaskBar. An easy way to do this is
 // to use its actual name, as this will always be unique within
 // a single instance of OpenInsight

 Call Set_Property_Only(@Window, "TASKBARID", @Window)

See Also

WINDOW ICON property, WINDOW OVERLAYICON property, WINDOW

TASKBARBUTTON property.

TRACKINGSIZE property

Description

Specifies the minimum and maximum sizes that a user may resize a form to.

Property Value

This property value is an @Fm-delimited array of integer values:

<1> Minimum Tracking Width
<2> Minimum Tracking Height
<3> Maximum Tracking Width
<4> Maximum Tracking Height

Each value must be greater than zero, or have a value of "-1", which means use the

default Windows value for that attribute instead.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

Setting all four fields to the same non-negative value will prevent the user resizing the

form with the mouse or with its System Menu (see example below).

• This is useful for preventing the resizing of MDI child forms because Windows

always creates them with a resizable border style, overriding any selected

design settings such as a thin, non-sizable border.

Equated constants for use with the TRACKINGSIZE property can be found in the

PS_EQUATES insert record.

The TRACKINGSIZE property is used during WM_GETMINMAXINFO message

processing to determine form resizing limits. Please refer to the documentation on

the Microsoft website for further information regarding this process.

Example

 // Example - fix the size of the form so that the user cannot change it
 $Insert PS_Equates

 FormSize = Get_Property(@Window, "SIZE")

 TrackSize = ""
 TrackSize<PS_TRACKSIZE_MINWIDTH$> = FormSize<3>
 TrackSize<PS_TRACKSIZE_MINHEIGHT$> = FormSize<4>
 TrackSize<PS_TRACKSIZE_MAXWIDTH$> = FormSize<3>
 TrackSize<PS_TRACKSIZE_MAXHEIGHT$> = FormSize<4>

 Call Set_Property_Only(@Window, "TRACKINGSIZE", TrackSize)

 // Example - set the TRACKINGSIZE back to it's default values

 TrackSize = str(PS_TRACKSIZE_VAL_NOTSET$: @fm, 4)
 TrackSize[-1,1] = ""

 Call Set_Property_Only(@Window, "TRACKINGSIZE", TrackSize)

See also

Common GUI SIZE property, WINDOW FORMBORDERSTYLE property, WINDOW

SYSTEMMENU property, WINDOW SIZE event.

TRANSLUCENCY property

Description

Specifies the degree of transparency applied to a form when it is painted. Note that

unlike the common GUI TRANSLUCENCY property, this effect applies to the entire

form, not just its client area.

Form with 30% TRANSLUCENCY applied

Form with 70% TRANSLUCENCY applied

Property Value

This property is an integer value between 1 and 100, which represents the

percentage of transparency applied to the form. A value of 0 means fully opaque,

while a value of 100 means fully transparent (i.e. the form will not be drawn).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Setting the TRANSLUCENCY to 100 will hide the form, but it is still considered to be

visible, i.e. the VISIBLE property will not return an WS_HIDE$ value.

Example

 // Set the TRANSLUCENCY of the current form to 30%

 PrevVal = Set_Property(@Window, "TRANSLUCENCY", 30)

 // Remove the TRANSLUCENCY from the current form

 PrevVal = Set_Property(@Window, "TRANSLUCENCY", 0)

 // Hide the current form (Note – the form is still considered to be visible!)

 PrevVal = Set_Property(@Window, "TRANSLUCENCY", 100)

See also

Common GUI TRANSLUCENCY property, WINDOW HIDEEFFECT property, WINDOW

SHOWEFFECT property, WINDOW VISIBLE property, WINDOW HIDE method, WINDOW

SHOW method property.

TOPMOST property

Description

Specifies if a form appears above all other non-TOPMOST forms in the system z-order,

even when the form is not active.

Property Value

This is a boolean value. It returns TRUE$ if the form is flagged as a topmost form, or

FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

The TOPMOST property is implemented internally using the SetWindowPos Windows

API function, so please refer to the documentation on the Microsoft website for

further information on changing the z-order.

Example

 // Example – Determine if the current form is marked as a topmost form.

 IsTopMost = Get_Property(@Window, "TOPMOST")

See Also

Common GUI SETZORDER method.

VISIBLE property

Description

Specifies if a form is visible, hidden, maximized, or minimized.

Property Value

The VISIBLE property is an integer value that specifies how the form is displayed. It

may be one of the following when used with Set_Property:

Value Name Description

0 SW_HIDE Hides the form and activates another form.

1 SW_SHOWNORMAL Displays the form and activates it. If the form is

minimized or maximized, the system restores it to its

original size and position.

2 SW_SHOWMINIMIZED Minimizes the form and activates it.

3 SW_SHOWMAXIMIZED Maximizes the form and activates it.

4 SW_SHOWNOACTIVATE Displays the form in its most recent size and position. This

value is similar to SW_SHOWNORMAL, except that the

form is not activated.

5 SW_SHOW Activates the form and displays it in its current size and

position.

6 SW_MINIMIZE Minimizes the specified form and activates the next

top-level form in the Z order.

7 SW_SHOWMINNOACTIVE Displays the form as a minimized form. This value is

similar to SW_SHOWMINIMIZED, except the form is not

activated.

8 SW_SHOWNA Displays the form in its current size and position. This

value is similar to SW_SHOW, except that the form is not

activated.

9 SW_RESTORE Activates and displays the form. If the form is minimized

or maximized, the system restores it to its original size

and position. An application should specify this flag

when restoring a minimized form.

When used with Get_Property only the following values are returned:

• (0) SW_HIDE (form is hidden).

• (1) SW_SHOWNORMAL (form is visible).

• (2) SW_SHOWMINIMIZED (form is visible and minimized).

• (3) SW_SHOWMAXIMIZED (for is visible and maximized).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

The VISIBLE property is implemented internally using the ShowWindow Windows API

function and the property value corresponds to the function's nCmdShow

parameter value. Please see the Microsoft website for more details on controlling

form visibility.

Constants for these values are defined in the MSWIN_SHOWWINDOW_EQUATES insert

record.

Example

 $Insert MsWin_ShowWindow_Equates

 // Example - Hide the current form

 Call Set_Property_Only(@Window, "VISIBLE", SW_HIDE$)

 // Example - Maximize the current form

 IsMaximized = Get_Property(@Window, "VISIBLE")
 If IsMaximized Else

 Call Set_Property_Only(@Window, "VISIBLE", SW_SHOWMAXIMIZED$)

 End

See also

Common GUI VISIBLE property.

WRITEATRECORD property

Description

Specifies how data set with the ATRECORD property is saved during a write

operation.

Property Value

This is a boolean value. When set to TRUE$, data from columns that are not bound

to a control on the form (and that were set via the ATRECORD property) is written to

the table in addition to the data in the controls. When set to FALSE$ (the default)

only data from the controls is written back during a write operation.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

See the ATRECORD property for a full explanation of how WRITEATRECORD works in

conjunction with ATRECORD.

This property is considered deprecated in favor of the WRITEMODE property. It is

effectively a backwards-compatible synonym for WRITEMODE.

Example

 // Example - set the WRITEATRECORD so that any data not bound to a control in the
 // current form is still updated in the WRITE event.

 Call Set_Property_Only (@Window, "WRITEATRECORD", TRUE$)
 Call Set_Property_Only(@Window, "ATRECORD", MyDataRow)

See Also

WINDOW ATRECORD property, WINDOW RECORD property, WINDOW ROW property,

WINDOW WRITEMODE property.

WRITEMODE property

Description

Specifies how data set with the ROW property is saved during a write operation.

Property Value

This is an integer value that can be one of the following:

Value Name Description

0 WriteControlsOnly Only data from data-bound controls on the form is

written back to the table during a write operation. This

is the default behavior.

1 WriteEntireRow Data from columns that are not bound to a control on

the form (and that were set via the ROW property) is

written to the table in addition to the data in the

controls.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

See the ROW property for a full explanation of how WRITEMODE works in conjunction

with ROW.

Equated constants for use with the WRITEMODE property may be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example - set the WRITEMODE so that any data not bound to a control in the current.
 // form is still updated in the WRITE event.
 $Insert PS_Window_Equates

 Call Set_Property_Only (@Window, "WRITEMODE", PS_WRMD_ALL$)
 Call Set_Property_Only(@Window, "ROW", MyDataRow)

See Also

WINDOW ROW property.

WINDOW Methods

The WINDOW object supports the following methods in addition to the Common GUI

Object methods, except where noted below:

Name Description

CENTER Centers a form on the desktop or over its parent.

CLEARROW Clears the data row from a data-bound form.

CLOSE Closes a form by triggering its CLOSE event.

CLOSEDIALOG Closes a dialog box and returns a value to the owner.

DELETEROW Deletes the currently loaded data row in a data-

bound form.

FLASH "Flashes" a form's caption and/or taskbar button a

specified number of times.

GETFOCUSEDCONTROL Returns the control with focus on the form.

HIDE Hides a form using the specified effect.

HIDEMENUBAR Hides the specified form's menu bar.

MDICASCADE Arranges MDI child forms in a cascaded overlapping

formation.

MDIICONARRANGE Arranges minimized MDI child forms.

MDITILE Arranges MDI child forms in a tiled formation.

QBFASKQUERY Asks for and executes an RLIST query statement and

populates the specified form's QBF result list.

QBFCLOSESESSION Closes a QBF session for the specified form.

QBFGOTO Loads a specific row from the form's QBF result list

based on it's position.

QBFGOTOID Loads a specific row from the QBF result list using its ID.

QBFINITSESSION Initializes and begins a QBF session for the specified

form.

QBFLOADSAVEDLIST Asks the user for the name of a saved list and loads the

keys into the specified form's QBF result list.

QBFRUNQUERY Builds and executes an RLIST query from the data in the

controls and populates the specified form's QBF result

list.

QBFSHOWFIRST Shows the first row from the specified form's QBF result

list.

QBFSHOWLAST Shows the last row from the specified form's QBF result

list.

QBFSHOWNEXT Shows the next row from the specified form's QBF result

list.

QBFSHOWPREV Shows the previous row from the specified form's QBF

result list.

QBFSHOWTABLE Displays the specified form's QBF result list in a non-

modal dialog box.

READROW Reads the data into the specified data-bound form

and populates the controls.

READPREVROW Populates controls in the specified form with data from

the previously loaded row.

*SCROLL Scrolls the contents of the form by the specified

amount.

SHOW Displays a form using the specified effect.

SHOWMENUBAR Displays the specified form's menu bar.

SHOWDIALOG Displays a modal dialog using the specified form as the

owner.

SHOWINDEXLOOKUP Displays the index lookup dialog box using the

specified form as the owner,

SHOWMESSAGE Displays a message box, using the specified form as

the parent.

SHOWPOPUP Displays a popup box, using the specified form as the

owner.

STARTFORM Executes a new form, using the specified form as the

owner.

STARTMDICHILDFORM Executes a new MDI child form for the specified MDI

frame parent.

TRACKDROPDOWNMENU Displays a dropdown menu for a top-level menu bar

item on the specified form.

UPDATEROW Updates the data associated with the primary table of

a data-bound form without updating data-bound

controls.

WRITEROW Writes the data contains in the specified data-bound

form to the database.

CENTER method

Description

Centers a form on the desktop or over its parent object.

Syntax

 NewSize = Exec_Method(CtrlEntID, "CENTER", CenterParent, IdealSize, |

 CalculateOnly, ParentSize, Options)

Parameters

Name Required Description

CenterParent No If TRUE$ then the form is centered on its parent, otherwise it is

centered on the desktop. Defaults to FALSE$.

IdealSize No This is an @Fm-delimited array specifying the desired

coordinates and size to move the window to:

 <1> Left-position (if -1 then the window is
 Centered on the X-axis)

 <2> Top-position (if -1 then the window is centered
 On the Y-axis)

 <3> Width (-1 means do not adjust the window width)

 <4> Height (-1 means do not adjust the window
 height)

All these values default to -1.

They must be in the same scale units as the form being

centered.

CalculateOnly No If TRUE$ then the form is not moved or resized, but the resulting

coordinates are returned instead. Defaults to FALSE$.

ParentSize No This is an @Fm-delimited array that can be used to override

the size of the parent (if CenterParent is TRUE$), or the Desktop

(if CenterParent is FALSE$).

 <1> Left-position
 <2> Top-position
 <3> Width
 <4> Height

They must be in the same scale units as the form being

centered.

Options No This is an @Fm-delimited array of options structured like so:

 <1> Force boundary check. If this is TRUE$ then
 the form is kept within the boundary of the
 desktop even if the IdealSize Top and Left
 positions have been explicitly specified.

 <2> Desktop "anchor" form. Contains the name of
 a form to use when deciding which monitor to
 center the form on. The form is centered
 on the same desktop as the anchor form.

Returns

An @Fm-delimited dynamic array containing the new size of the form in the same

format as the standard SIZE property.

Remarks

N/a.

Example

 // Center a form on the desktop
 Call Exec_Method(@Window, "CENTER")

 // Center a form on its parent window
 Call Exec_Method(@Window, "CENTER", TRUE$)

 // Center a form on the desktop with a specific size of 800x600
 FormSize = -1 : @Fm : -1 : @Fm : 800 : @Fm : 600
 Call Exec_Method(@Window, "CENTER", FALSE$, FormSize)

 // Center a form on the desktop with a specific size of 800x600
 // but only return the coordinates - do not update the form.
 FormSize = -1 : @Fm : -1 : @Fm : 800 : @Fm : 600
 NewSize = Exec_Method(@Window, "CENTER", FALSE$, FormSize, TRUE$)

 // Center a form on the same desktop as the RTI_IDE form and
 // ensure it stays within the desktop boundary.
 FormSize = -20 : @Fm : 10 : @Fm : 800 : @Fm : 600
 Options = TRUE$
 Options<2> = "RTI_IDE"
 Call Exec_Method(@Window, "CENTER", FALSE$, FormSize, FALSE$, "", Options)

See Also

Common GUI MONITOR property, Common GUI SCREENSIZE property, Common GUI

SIZE property, SYSTEM MONITORLIST property.

CLEARROW method

Description

Clears the data from the controls in a data-bound form by triggering the form's

CLEAR event.

Syntax

 Status = Exec_Method(CtrlEntID, "CLEARROW", SaveKey, SuppressWarning, |

 MaintainFocus)

Parameters

Name Required Description

SaveKey No This is a boolean value. If TRUE$ then the controls bound to

key columns will not be cleared. The default is FALSE$.

SuppressWarning No This is a boolean value. If TRUE$ then the user will not be

warned if they have unsaved changes in the form before it

is cleared. The default is FALSE$.

MaintainFocus No This is a boolean value. If TRUE$ then the focus is not

moved. By default it is moved to the first control in the tab-

order.

Returns

The CLEAR event status. If this is not null then an error has occurred or the user

stopped the clear request).

Remarks

N/a.

Example

 // Example - Clear the contents of the current form without any warning
 // and change the focus back to the first in the tab-order

 Call Exec_Method(@Window, "CLEARROW", FALSE$, TRUE$, FALSE$)

See also

WINDOW CLEAR event.

CLOSE method

Description

Closes a form by triggering its CLOSE event.

Syntax

 Status = Exec_Method(CtrlEntID, "CLOSE", CloseFlags, CloseAsync)

Parameters

Name Required Description

CloseFlags No This is an @Fm delimited array with the following structure:

 <1> If TRUE$ then suppress any warnings with
 due to changed data if the form is data-
 bound.

CloseAsync No This is a boolean value. If TRUE$ then the form is closed in an

asynchronous manner. The default is FALSE$.

(This is analogous to using Send_Event or Post_Event to

trigger a CLOSE event in previous versions of OpenInsight)

Returns

If the form is closed asynchronously a boolean value is returned; TRUE$ if the CLOSE

event request has made successfully, or FALSE$ otherwise.

If the form is not closed asynchronously the event status from the underlying CLOSE

event is returned - if this is not null an error has occurred (or the has user stopped the

close request).

Remarks

Care should be taken when closing a form from an event that is raised from one of

the form's own child controls. In this case it is always better to set the CloseAsync

flag to TRUE$ so that the current event has chance to finish executing before the

form is destroyed.

Example

 // Example – Close the current form asynchronously allowing for any data warnings

 Call Exec_Method(@Window, "CLOSE", FALSE$, TRUE$)

See also

WINDOW CLOSE event, End_Dialog stored procedure, End_Window stored

procedure.

CLOSEDIALOG method

Description

Closes a modal dialog box and returns a value back to the caller.

Syntax

 ClosedFlag = Exec_Method(CtrlEntID, "CLOSEDIALOG", RetVal)

Parameters

Name Required Description

RetVal No Value to return to the caller.

Returns

Returns TRUE$ if the dialog box was closed, or FALSE$ otherwise.

Remarks

This method is a wrapper around the End_Dialog stored procedure. Please see the

End_Dialog stored procedure description for more details.

Example

 // Example – Close the current dialog box returning the contents of the EDL_NAME
 // control to the caller

 RetName = Get_Property(@ Window : ".EDL_NAME", "TEXT")
 bClosed = Exec_Method(@Window, "CLOSEDIALOG", RetName)

See Also

WINDOW SHOWDIALOG method, Dialog_Box stored procedure, End_Dialog stored

procedure.

DELETEROW method

Description

Deletes the currently loaded data row in a data-bound form by triggering the form's

DELETE event.

Syntax

 Status = Exec_Method(CtrlEntID, "DELETEROW", SuppressWarning)

Parameters

Name Required Description

SuppressWarning No This is a boolean value. If TRUE$ then the user will not be

asked to confirm if they wish to delete the row. The default

is FALSE$.

Returns

The DELETE event status. If this is not null an error has occurred (or the user has

stopped the delete request).

Remarks

N/a.

Example

 // Example - Delete the contents of the current form unconditionally.

 Call Exec_Method(@Window, "DELETEROW", TRUE$)

See also

WINDOW DELETE event.

FLASH method

Description

"Flashes" a form's caption and/or taskbar button the specified number of times to

draw the user's attention to it. The active state of the window is not changed.

Syntax

 ActiveFlag = Exec_Method(CtrlEntID, "FLASH", FlashCount, FlashCaption, |

 FlashTaskBar , FlashRate)

Parameters

Name Required Description

FlashCount No An integer value specifying the number of times to flash the

form, or flash it continuously (defaults to 1)

• A value greater than 0 flashes it that many times.

• A value of -1 flashes the form until it is stopped.

• A value of -2 flashes the form until it is brought to the

foreground.

• A value of 0 stops the form flashing.

FlashCaption No A boolean value – if TRUE$ (the default) the form's caption

bar is flashed.

FlashTaskBar No A boolean value – if TRUE$ (the default) the form's taskbar

button is flashed (if it has one).

FlahsRate No A integer value specifying the flash rate in milliseconds. This

defaults to the system cursor blink rate.

Returns

Returns FALSE$ if the form was inactive before the flash or TRUE$ if it was active.

Remarks

The FLASH method is implemented internally using the FlashWindowEx Windows API

function, so please refer to the documentation on the Microsoft website for further

information.

Example

 // Example – flash the current form continuously until it is activated.

 Call Exec_Method(@Window, "FLASH", -2)

See also

WINDOW ACTIVE property.

GETFOCUSEDCONTROL method

Description

Returns the name of the control that has the focus if the form is active, or, if the form

is not active, the name of the control that will receive the focus when it is.

Syntax

 FocusCtrlName = Exec_Method(CtrlEntID, "GETFOCUSEDCONTROL", NoInternal)

Parameters

Name Required Description

NoInternal No If TRUE$ then only controls not marked as "Internal" will be

returned. Defaults to FALSE$.

Returns

The name of the control that is currently focused or will receive the focus when the

form is activated.

Remarks

Executing this method is essentially the same as using the "get" operation in the

WINDOW FOCUS property to return the current focus control for the form. However,

some objects, like the cell editor an in EDITTTABLE control, are marked as "internal"

and it may not be appropriate to use them when returned via the FOCUS property.

In this case it is better to use the GETFOCUSEDCONTROL method and the NoInternal

parameter to return the parent "non-internal" control instead.

Example

 $Insert Logical

 // Return the focused control for the current form, resolving it to a non-internal ID.

 FocusCtrlID = Exec_Method(@Window, "GETFOCUSEDCONTROL", TRUE$)

See Also

Common GUI object FOCUS property, SYSTEM FOCUS property, WINDOW

FIRSTFOCUS property, WINDOW FOCUS property, WINDOW ACTIVATED event,

WINDOW INACTIVATED event.

HIDE method

Description

Hides a form using the specified effect.

Syntax

 Call Exec_Method(CtrlEntID, "HIDE", HideEffect)

Parameters

Name Required Description

HideEffect No If specified this should be a numeric value corresponding to

a hide effect as defined in the HIDEEFFECT property.

If null or "-1" then the effect specified in the HIDEEFFECT

property is used.

Returns

N/a.

Remarks

This method does not apply when used with an MDI Child form.

Equated constants for the HIDEEFFECT property value can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example – hide the current form using a "Slide Up" effect
 $Insert PS_Window_Equates

 Call Exec_Method(@Window, "HIDE", PS_SHE_SLIDE_UP$)

See Also

WINDOW HIDEEFFECT property, WINDOW SHOWEFFECT property, WINDOW

TRANSLUCENCY property, WINDOW VISIBLE property, WINDOW SHOW method.

HIDEMENUBAR method

Description

Hides the menubar for the specified form.

Syntax

 Call Exec_Method(CtrlEntID, "HIDEMENUBAR")

Parameters

N/a.

Returns

N/a.

Remarks

N/a.

Example

 // Example – hide the menubar for the current form

 Call Exec_Method(@Window, "HIDEMENUBAR")

See Also

MENUBAR object, WINDOW SHOWMENUBAR method

MDICASCADE method

Description

Arranges MDI child forms in a stacked cascading formation, ensuring the title bar of

each is visible.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "MDICASCADE", SkipDisabled, UseZOrder)

Parameters

Name Required Description

SkipDisabled No This is a boolean value - if TRUE$ then any disabled MDI child

forms are excluded from the cascade operation.

UseZOrder No This is a boolean value - if TRUE$ then the MDI Child forms are

arranged in z-order.

Returns

TRUE$ if the cascade operation was successful, FALSE$ otherwise.

Remarks

This method only applies to MDI frame forms.

Example

 // Cascade the MDI child forms for the current MDI frame form, ignoring disabled forms.

 Call Exec_Method(@Window, "MDICASCADE", TRUE$)

See Also

WINDOW MDIFRAME property, WINDOW MDIICONARRANGE method, WINDOW

MDITILE method.

MDIICONARRANGE method

Description

Arranges all minimized MDI child forms for the specified MDI frame form. Non-

minimized MDI child forms are not affected.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "MDIICONARRANGE")

Parameters

N/a.

Returns

TRUE$ if the operation was successful, FALSE$ otherwise.

Remarks

This method only applies to MDI frame forms.

This method is called by the system-level ARRANGEICONS event handler.

For more details on this method please see the documentation for the

WM_MDIICONARRANGE message on the Microsoft website.

Example

 // Arrange the minimized MDI child icons for the current MDI frame form

 Call Exec_Method(@Window, "MDIICONARRANGE", TRUE$)

See Also

WINDOW MDIFRAME property, WINDOW MDICASCADE method , WINDOW MDITILE

method, WINDOW ARRANGEICONS event.

MDITILE method

Description

Arranges MDI child forms in a tiled format. Each child is displayed in its entirety,

overlapping none of the other child forms. All of the child forms are sized, as

necessary, to fit within the MDI client area.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "MDITILE", TileHorizontal, SkipDisabled)

Parameters

Name Required Description

TileHorizontal No This is a boolean value - if TRUE$ then the MDI Child forms are

tiled horizontally, otherwise they are tiled vertically.

SkipDisabled No This is a boolean value - if TRUE$ then any disabled MDI child

forms are excluded from the tiling operation.

Returns

TRUE$ if the tiling operation was successful, FALSE$ otherwise.

Remarks

This method only applies to MDI frame forms.

The arguments passed to this method have been changed from previous versions of

OpenInsight to support horizontal tiling and the "SkipDisabled" option simultaneously.

Example

 // Tile the MDI child forms vertically for the current MDI frame form,
 // ignoring disabled child forms.

 Call Exec_Method(@Window, "MDITILE", FALSE$, TRUE$)

See Also

WINDOW MDIFRAME property, WINDOW MDICASCADE method, WINDOW

MDIICONARRAGE method.

QBFASKQUERY method

Description

Asks the user for an RLIST query statement and loads the results into the specified

form's QBF result list (QBFLIST property).

Syntax

 Status = Exec_Method(CtrlEntID, "QBFASKQUERY")

Parameters

N/a.

Returns

The QBFQUERY event status. If this is not null then an error has occurred or the user

has cancelled the operation.

Remarks

This method triggers the form's QBFQUERY event.

The query statement entered must be a valid RLIST SELECT statement.

Example

 // Example – ask the user for an RLIST query

 Status = Exec_Method(@Window, "QBFASKQUERY")
 If BLen(Status) Then
 // Error or cancelled
 End

See also

WINDOW QBFLIST property, WINDOW QBFQUERY event, RLIST stored procedure.

QBFCLOSESESSION method

Description

Closes the QBF session for the specified form, returning it to normal operation.

Syntax

 Status = Exec_Method(CtrlEntID, "QBFCLOSESESSION")

Parameters

N/a.

Returns

The QBFCLOSE event status. If this is not null then an error has occurred.

Remarks

This method triggers the form's QBFCLOSE event. If successful, the form's QBFSTATUS

property is set to "QBFInactive".

Example

 // Example – end the current form's QBF session.

 Status = Exec_Method(@Window, "QBFCLOSESESSION")

See also

WINDOW QBFSTATUS property, WINDOW QBFINITSESSION method, WINDOW

QBFCLOSE event.

QBFGOTO method

Description

Loads a specified row from the form's QBF result list (QBFLIST property) using an index

position.

Syntax

 Status = Exec_Method(CtrlEntID, "QBFGOTO", Position)

Parameters

Name Required Description

Position No This is a numeric value which should be between 1 and the

number of rows in the QBF result list.

If not specified, the user is asked to enter the position via a

message box.

Returns

The QBFABS event status. If this is not null then an error has occurred, or the user has

cancelled the process.

Remarks

This method triggers the form's QBFABS event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the 10th row in the QBF result list

 Status = Exec_Method(@Window, "QBFGOTO", 10)
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSTATUS

property, WINDOW QBFABS event.

QBFGOTOID method

Description

Loads a specified row from the form's QBF result list (QBFLIST property) using a row ID.

Syntax

 Status = Exec_Method(CtrlEntID, "QBFGOTOID", RowID)

Parameters

Name Required Description

RowID No This is key value that should be in the QBF result list.

If not specified, the user is asked to enter it directly via a

message box.

Returns

The QBFLOADID event status. If this is not null then an error has occurred, or the user

has cancelled the process.

Remarks

This method triggers the form's QBFLOADID event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the row with the key of “A123” in the QBF result list

 Status = Exec_Method(@Window, "QBFGOTOID", “A123”)
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFSTATUS property, WINDOW QBFLOADID

event.

QBFINITSESSION method

Description

Initializes and begins a QBF session for the specified form. Any existing data is

cleared, and normal data validation processing is temporarily removed from

controls to allow easy data entry for the query.

Syntax

 Status = Exec_Method(CtrlEntID, "QBFINITSESSION")

Parameters

N/a.

Returns

The QBFINIT event status. If this is not null then an error has occurred.

Remarks

This method triggers the form's QBFINIT event. If successful, the form's QBFSTATUS

property is set to "QBFInitialize " to signify that the form is in "query entry" mode.

Example

 // Example – begin a QBF session for the current form.

 Status = Exec_Method(@Window, "QBFINITSESSION")

See also

WINDOW QBFSTATUS property, WINDOW QBFCLOSESESSION method, WINDOW

QBFINIT event.

QBFLOADSAVEDLIST method

Description

Asks the user for the name of a saved list and loads the keys into the specified form's

QBF result list (QBFLIST property).

The source of the list may be chosen from the TCL Query Table or from the SYSLISTS

table.

Syntax

 Status = Exec_Method(CtrlEntID, "QBFLOADSAVEDLIST")

Parameters

N/a.

Returns

The QBFLOADLIST event status. If this is not null then an error has occurred or the user

has cancelled the operation.

Remarks

This method triggers the form's QBFLOADLIST event.

Example

 // Example – ask the user for the list of keys to load.

 Status = Exec_Method(@Window, "QBFLOADSAVEDLIST")

See also

WINDOW QBFLIST property, WINDOW QBFLOADLIST event.

QBFRUNQUERY method

Description

Builds and executes an RLIST query from the data in the controls and populates the

specified form's QBF result list (QBFLIST property).

Syntax

 Status = Exec_Method(CtrlEntID, "QBFRUNQUERY")

Parameters

N/a.

Returns

The QBFRUN event status. If this is not null then an error has occurred.

Remarks

This method triggers the form's QBFRUN event.

The form's QBFSTATUS property must have been set to "QBFInitialize" by executing the

QBFINITSESSION method first.

Example

 // Example – execute the QBF query process to find and load the results into the
 // current form:

 Status = Exec_Method(@Window, "QBFRUNQUERY")

See also

WINDOW QBFLIST property, WINDOW QBFSTATUS property, WINDOW QBFINITSESSION

method, WINDOW QBFRUN event.

QBFSHOWFIRST method

Description

Loads the first row from the specified form's QBF result list (QBFLIST property).

Syntax

 Status = Exec_Method(CtrlEntID, "QBFSHOWFIRST")

Parameters

N/a.

Returns

The QBFFIRST event status. If this is not null then an error has occurred.

Remarks

This method triggers the form's QBFFIRST event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the first row in the QBF result list

 Status = Exec_Method(@Window, "QBFSHOWFIRST")
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSTATUS

property, WINDOW QBFSHOWLAST method, WINDOW QBFSHOWNEXT method,

WINDOW QBFSHOWPREV method, WINDOW QBFSHOWTABLE method, WINDOW

QBFFIRST event.

QBFSHOWLAST method

Description

Loads the last row from the specified form's QBF result list (QBFLIST property).

Syntax

 Status = Exec_Method(CtrlEntID, "QBFSHOWLAST")

Parameters

N/a.

Returns

The QBFLAST event status. If this is not null then an error has occurred.

Remarks

This method triggers the form's QBFLAST event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the last row in the QBF result list

 Status = Exec_Method(@Window, "QBFSHOWLAST")
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSTATUS

property, WINDOW QBFSHOWFIRST method, WINDOW QBFSHOWNEXT method,

WINDOW QBFSHOWPREV method, WINDOW QBFSHOWTABLE method, WINDOW

QBFLAST event.

QBFSHOWNEXT method

Description

Loads the next row from the specified form's QBF result list (QBFLIST property).

Syntax

 Status = Exec_Method(CtrlEntID, "QBFSHOWNEXT")

Parameters

N/a.

Returns

The QBFNEXT event status. If this is not null then an error has occurred.

Remarks

If the current position is at the end of the QBF result list then it is reset to point at the

first row instead.

This method triggers the form's QBFNEXT event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the next row in the QBF result list

 Status = Exec_Method(@Window, "QBFSHOWNEXT")
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSTATUS

property, WINDOW QBFSHOWFIRST method, WINDOW QBFSHOWLAST method,

WINDOW QBFSHOWPREV method, WINDOW QBFSHOWTABLE method, WINDOW

QBFNEXT event.

QBFSHOWPREV method

Description

Loads the previous row from the specified form's QBF result list (QBFLIST property).

Syntax

 Status = Exec_Method(CtrlEntID, "QBFSHOWPREV")

Parameters

N/a.

Returns

The QBFPREV event status. If this is not null then an error has occurred.

Remarks

If the current position is at the start of the QBF result list then it is reset to point at the

last row instead.

This method triggers the form's QBFPREV event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the previous row in the QBF result list

 Status = Exec_Method(@Window, "QBFSHOWPREV")
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSTATUS

property, WINDOW QBFSHOWFIRST method, WINDOW QBFSHOWLAST method,

WINDOW QBFSHOWNEXT method, WINDOW QBFSHOWTABLE method, WINDOW

QBFPREV event.

QBFSHOWTABLE method

Description

Displays the QBF result list in a non-modal dialog box. As the user selects a value in

the dialog the corresponding row is loaded in the owning form.

Syntax

 Status = Exec_Method(CtrlEntID, "QBFSHOWTABLE")

Parameters

N/a.

Returns

The QBFTABLE event status. If this is not null then an error has occurred.

Remarks

This method triggers the form's QBFTABLE event.

The form must have a valid QBF result list active, i.e. the QBFSTATUS property must

have a value of " QBFActive".

Example

 // Example – display the QBF result list

 Status = Exec_Method(@Window, "QBFSHOWTABLE")
 If BLen(Status) Then
 // Error ...
 End

See also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSTATUS

property, WINDOW QBFSHOWFIRST method, WINDOW QBFSHOWLAST method,

WINDOW QBFSHOWNEXT method, WINDOW QBFPREV event.

READPREVROW method

Description

Populates controls in the specified form with data from the previously loaded row.

Syntax

 Status = Exec_Method(CtrlEntID, "READPREVROW", ControlList)

Parameters

Name Required Description

ControlList No If specified this an @Fm-delimited array of data-bound

control names that should be loaded from the cached

data.

If this parameter is null then all data-bound controls will be

loaded from the cached data.

Returns

Error status results. If this is not null then an error has occurred.

Remarks

A data-bound form caches row data at the following points:

• When data is written to the database – a copy of the data in the controls is

saved.

• When data is loaded into the controls during a read operation. This is

optional and only happens If the LOADPREVALWAYS property is TRUE$: if so a

copy of the data loaded into the controls during a READ event is cached (this

is always overwritten by data from a write operation of course).

The READPREVROW method uses this cached data to load controls when requested.

Controls bound to key columns are ignored.

This method is intended to mimic the "Alt-C" functionality of found in Advanced

Revelation applications.

Example

 // Example - Load data from a previous row into the control that currently
 // has the focus. This sort of functionality would typically be found on a
 // form's Edit menu.

 CtrlID = Get_Property(@Window, "FOCUS")
 If BLen(CtrlID) Then
 ColPos = Get_Property(CtrlID, "POS")
 If ColPos Then
 // CtrlID is a non-key databound control
 Status = Exec_Method(@Window, "READPREVROW", CtrlID)
 End
 End

See Also

WINDOW LOADPREVALWAYS property, WINDOW ROW property, WINDOW READ

event, WINDOW WRITE event.

READROW method

Description

Reads the data into the specified data-bound form and populates the controls.

Syntax

 Status = Exec_Method(CtrlEntID, "READROW", RowID, SuppressWarning)

Parameters

Name Required Description

RowID No If specified this is the ID of the row to be loaded into the

form.

For a multi-table form RowID should be an @fm-delimited

array of keys that matches the order of the tables in the

form's join specification:

i.e.

 rowID<1> = Key for primary table

 rowID<2> = Key for first subsidiary table

 rowID<3> = Key for second subsidiary table

 rowID<n> = Key for nth subsidiary table

etc.

If null (the default) then the data entered in the key-

controls is extracted to build the RowID used to load the

row.

SuppressWarning No If TRUE$ then the SAVEWARN property is not checked

before a new row is loaded when rowID is specified.

The default is FALSE$, which means the SAVEWARN property

will be processed as normal.

This parameter is ignored is RowID is null.

Returns

The READ event status. If this is not null then an error has occurred or the user has

cancelled the process.

Remarks

This method triggers the form's READ event.

Example

 // Example - Read a row into the current form unconditionally

 RowID = "AS123*EF"

 ReadStatus = Exec_Method(@Window, "READROW", RowID, TRUE$)
 If BLen(ReadStatus) Then
 // Error or cancelled...
 End

See Also

WINDOW ID property, WINDOW ROW property, WINDOW SAVEWARN property,

WINDOW WRITEROW method, WINDOW READ event.

SCROLL method

Description

Scrolls the contents of the specified form’s client area.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SCROLL", XShift, YShift)

Parameters

Name Required Description

XShift Yes Integer value specifying the amount of horizontal scrolling.

YShift Yes Integer value specifying the amount of vertical scrolling.

Returns

TRUE$ if the client area was scrolled successfully, or FALSE$ otherwise.

Remarks

The XShift and YShift values are interpreted as DIPs or PX based on the form's

SCALEUNITS property.

The SCROLL method is implemented internally using the ScrollWindow Windows API

function. More information on this function can be found on the Microsoft website.

Example

 // Example – scroll the form’s contents by 100 DIPs vertically

 Call Exec_Method(@Window, "SCROLL", 0, 100)

See Also

N/a.

SHOW method

Description

Displays a form using the specified effect.

Syntax

 Call Exec_Method(CtrlEntID, "SHOW", ShowEffect)

Parameters

Name Required Description

ShowEffect No If specified this should be a numeric value corresponding to

a show effect as described in the SHOWEFFECT property.

If null or "-1" then the effect specified in the SHOWEFFECT

property is used.

Returns

N/a.

Remarks

This method does not apply when used with an MDI Child form.

Equated constants for the SHOWEFFECT property value can be found in the

PS_WINDOW_EQUATES insert record.

Example

 // Example – shown the current form using a "Slide Down" effect
 $Insert PS_Window_Equates

 Call Exec_Method(@Window, "SHOW", PS_SHE_SLIDE_DOWN$)

See Also

WINDOW HIDEEFFECT property, WINDOW SHOWEFFECT property, WINDOW

TRANSLUCENCY property, WINDOW VISIBLE property, WINDOW HIDE method.

SHOWDIALOG method

Description

Displays a dialog box using the specified form as the owner.

Syntax

 RetVal = Exec_Method(CtrlEntID, "SHOWDIALOG", DialogName, CreateParam, |

 Options, AsyncParams)

Parameters

Name Required Description

DialogName Yes Name of the form to execute as a dialog box. Must be in

upper-case.

CreateParam No Data to pass to the form's CREATE event. This data is passed

as the "CreateParam" argument when the CREATE event is

triggered. It must not contain any @Rm system delimiter

characters.

Options No A dynamic array of extra options for launching the form:

<1> If TRUE$ then disable ALL other forms owned by
 the owner form, not just the owner form itself.

<2> GETPARENTFORM override. The Dialog_Box stored
 procedure uses the WINDOW object GETPARENTFORM
 method internally. This option allows it to be
 tweaked as desired.

AsyncParams No A dynamic array of options that control Asynchronous mode.

When executed in this mode the returned data is not passed

directly back to the calling stored procedure – rather it is

passed back via the owner's ENDDIALOG event.

<1> If TRUE$ then the dialog will be executed in
 Asynchronous mode.

<2> Contains a string argument passed back to the
 owner's ENDDIALOG event. Useful for identifying
 the returned data.

Returns

If the dialog box is executed in synchronous mode the return value is the data

passed back from the CLOSEDIALOG method (or an End_Dialog function call).

If the dialog is executed in asynchronous mode the return value will be the instance

ID of the created dialog box. In this case the data passed back from an End_Dialog

call will passed as an argument to the owner form's ENDDIALOG event.

If an error occurs the return value will be null.

Remarks

This method is a wrapper around the Dialog_Box stored procedure. Please see the

Dialog_Box stored procedure description for more details.

Example

 // Example - Display a dialog box in synchronous mode using the
 // current form as the owner and passing it the contents of a
 // variable called CurrName as the CreateParam.

 NewName = Exec_Method(@Window, "SHOWDIALOG", "MY_DIALOG_BOX", CurrName)

 If BLen(NewName) Then
 // The user entered a new name so process it
 Call Do_Something_With_This_Name(NewName)
 End

See Also

WINDOW CLOSEDIALOG method, WINDOW STARTFORM method, Dialog_Box stored

procedure.

SHOWINDEXLOOKUP method

Description

Displays an Index Lookup dialog box using the specified form as the owner.

Syntax

 RetVal = Exec_Method(CtrlEntID, "SHOWINDEXLOOKUP", IndexedTable, |

 SearchColumns, DisplayColumns, SelMode)

Parameters

Name Required Description

IndexedTable Yes The indexed table to search. This table must have at least

one Btree Index on it.

SearchColumns Yes Contains an @Fm-delimited list of column names to display

in the dialog that the user may search.

DisplayColumns Yes Contains an @Fm-delimited list of columns names to show in

the results popup when a user chooses the row(s) to load

into the form.

SelMode No Contains an @fm delimited list of selection options:

 <1> Mode – this can be either "MULTI" or

 "SINGLE" (the default). If "MULTI"

 then the user may select more than

 one row to return.

 <2> Contains the name of the control to

 return the selected row IDs to. If

 null then the row IDs are loaded into

 the form as a QBF result list.

 This can be a virtual name like "@WINDOW"

 or "@SELF" that are used in normal quick

 event programming.

 <3> If a control name is specified in

 field <2> this field contains the name

 of the property to set such as "TEXT"

Returns

The IXLOOKUP event status. If this is not null then an error has occurred or the user

has cancelled the process.

Remarks

This method triggers the form's IXLOOKUP event.

Example

 // Example - launch the index lookup dialog using the current window as the owner,
 // and put the returned key into the EDL_CUST_ID control

 TableName = "CUSTOMERS"
 SearchCols = "SURNAME" : @Fm : "STREET" : @Fm : "CITY"
 DisplayCols = "FULL_NAME" : @Fm : "FULL_ADDRESS"

 SelMode = "SINGLE"
 SelMode<2> = @Window : ".EDL_CUST_ID"
 SelMode<3> = "TEXT"

 Status = Exec_Method(@Window, "SHOWINDEXLOOKUP", |
 TableName, |
 SearchCols, |
 DisplayCols, |
 SelMode)

See Also

WINDOW STARTDIALOG method, WINDOW SHOWMESSAGE method, WINDOW

SHOWPOPUP method, WINDOW IXLOOKUP event.

SHOWMENUBAR method

Description

Shows the menubar for the specified form.

Syntax

 Call Exec_Method(CtrlEntID, "SHOWMENUBAR")

Parameters

N/a.

Returns

N/a.

Remarks

N/a.

Example

 // Example – show the menubar for the current form

 Call Exec_Method(@Window, "SHOWMENUBAR")

See Also

MENUBAR object, WINDOW HIDEMENUBAR method

SHOWMESSAGE method

Description

Displays a message box, using the specified form as the parent.

Syntax

 MessageValue = Exec_Method(CtrlEntID, "SHOWMESSAGE", MessageStruct, |

 MessageName)

Parameters

Name Required Description

MessageStruct Maybe This is an @Fm-delimited array that contains a message

structure as per the Msg() stored procedure.

Required if MessageName is null.

MessageName Maybe Contains the name of an OpenInsight repository MSG entity

to display. The fields in the MessageStruct parameter

override the fields from the stored entity.

Required if MessageStruct is null.

Returns

The value as specified by the message definition.

Remarks

This method is basically a wrapper around the Msg stored procedure. Please see

the documentation on Msg for more information.

See also

SYSTEM SHOWMESSAGE method, Msg stored procedure.

Example

 // Example - display a simple message

 $Insert Msg_Equates
 MsgStruct = ""
 MsgStruct<MTEXT$> = "WINDOW SHOWMESSAGE method example "
 MsgStruct<MICON$> = "*"
 MsgStruct<MJUST$> = "C"
 MsgStruct<MCAPTION$> = "Owned Message Box"

 MsgVal = Exec_Method(CtrlEntID, "SHOWMESSAGE", MsgStruct)

 // Example display a message with an entity name
 MsgVal = Exec_Method(CtrlEntID, "SHOWMESSAGE", "", "OI_ABOUT")

See Also

SYSTEM SHOWMESSAGE method, WINDOW STARTDIALOG method, WINDOW

SHOWINDEXLOOKUP method, WINDOW SHOWPOPUP method, Msg stored

procedure.

SHOWPOPUP method

Description

Displays a popup box using the specified form as the owner.

Syntax

 RetVal = Exec_Method(CtrlEntID, "SHOWPOPUP", PopupStruct,PopupName)

Parameters

Name Required Description

PopupStruct No Contains the popup definition structure. This is an @Fm-

delimited array of values that define the popup as per the

Popup stored procedure.

This parameter is required if PopupName is null.

MessageName No Contains the name of a valid POPUP entity as stored in the

OpenInsight repository. This can be the fully qualified entity

ID, or just the name of the popup, e.g.

 MYAPP*POPUP**MYPOPUP

or
 MYPOPUP

This parameter is required if PopupStruct is null.

Returns

The value as defined by the popup structure. See the Popup stored procedure for

more details.

Remarks

This method is a wrapper around the Popup stored procedure. Please see the

Popup stored procedure description and the POPUP_EQUATES insert record for more

details.

Example

 // Example - Display the ASCII_CHART popup box.

 PopupVal = Exec_Method(@Window, "SHOWPOPUP", "", "ASCII_CHART")

See Also

SYSTEM SHOWPOPUP method, WINDOW STARTDIALOG method, WINDOW

SHOWINDEXLOOKUP method, WINDOW SHOWMESSAGE method, Popup stored

procedure.

STARTFORM method

Description

Executes a new form, using the specified form as the owner.

Syntax

 RetVal = Exec_Method(CtrlEntID, "STARTFORM", FormName, CreateParam)

Parameters

Name Required Description

FormName Yes Name of the form to execute. Must be in upper-case.

CreateParam No Data to pass to the form's CREATE event. This data is passed

as the "CreateParam" argument when the CREATE event is

triggered.

Returns

The instance name of the newly created form, or null if the form cannot be started.

The instance ID is usually the same as the passed FormName, but if the form is

flagged as multi-instance then the PS can append a unique number (delimited with

an "*" character) to the returned ID to ensure that there are no conflicts with existing

forms.

Remarks

This method is a wrapper around the Start_Window stored procedure. Please see

the Start_Window stored procedure description for more details.

Example

 // Example - Display a form using the current form as the owner and passing
 // it the contents of a variable called SearchVar as the CreateParam.

 FormID = Exec_Method(@Window, "STARTFORM", "QUICK_SEARCH", SearchVar)

 If BLen(FormID) Else
 // Error!....
 End

See Also

SYSTEM STARTFORM method, WINDOW SHOWDIALOG method, WINDOW

STARTMDICHILDFORM method, Start_Window stored procedure.

STARTMDICHILDFORM method

Description

Executes a new MDI child form for the specified MDI Frame form.

Syntax

 RetVal = Exec_Method(CtrlEntID, "STARTMDICHILDFORM", FormName, CreateParam |

 AppearanceMode, InitX, InitY)

Parameters

Name Required Description

FormName Yes Name of the child form to execute. Must be in upper-

case.

CreateParam No Data to pass to the child form's CREATE event. This data is

passed as the "CreateParam" argument when the CREATE

event is triggered.

AppearanceMode No Specifies how the child form should be displayed. Can be

one of the following values:

 0 : Displays in the same way as the currently

 : active child (this is the default)

 1 : Normal

 2 : Minimized

 3 : Maximized

InitX No The initial X position of the child in the parent form's MDI

Client area.

InitY No The initial Y position of the child in the parent form's MDI

Client area.

Returns

The Instance ID of the newly created form is returned if successful. Null is returned if

the form fails to start. The instance ID is usually the same as the passed FormName,

but if the form is flagged as multi-instance then the PS can append a unique

number (delimited with an "*" character) to the returned ID to ensure that there are

no conflicts with existing forms.

Remarks

This method is only supported for MDI Frame forms.

This method is a wrapper around the Start_MDIChild stored procedure. Please see

the Start_ MDIChild stored procedure description for more details.

Example

 // Example - Start a maximized MDI Child form in an MDI Frame form, passing
 // an ID to load in the child's CREATE event.

 $Insert MSWin_ShowWindow_Equates

 CustID = "A12345"
 ChildID = Exec_Method(@Window, "STARTMDICHILDFORM",
 "CUSTOMER_ENTRY", |
 CustID, |
 SW_SHOWMAXIMIZED$, "", "")

See Also

WINDOW MDIFRAME property, SYSTEM STARTFORM method, WINDOW SHOWDIALOG

method, WINDOW STARTMDICHILDFORM method, Start_MDIChild stored procedure.

TRACKDROPDOWNMENU method

Description

Displays a dropdown menu for a top-level menu bar item on the specified form. The

menu is created and displayed from the passed menu item structure.

Syntax

 Status = Exec_Method(CtrlEntID, "TRACKDROPDOWNMENU", MenuItemID, |

 MenuStruct)

Parameters

Name Required Description

MenuItemID Yes Contains the fully qualified name of the top-level menu item

to "drop-down".

MenuStruct Yes A dynamic array containing the executable structure of the

menu.

Note that this structure does not include the usual menu

header fields.

Returns

TRUE$ if the menu is created and displayed successfully, or FALSE$ otherwise.

Remarks

This method is called by the DROPDOWNMENU event to display the dropdown menu

associated with a top-level menu item.

This is considered a low-level method. It is better to make any adjustments to the

menu structure in the DROPDOWN menu event handler instead.

Equates constants for working with menu structures can be found in the

PS_MENU_EQUATES insert record. Equated constants for the "TPM_" values can be

found in the MSWIN_MENU_EQUATES insert record.

Example

 // Display a droopdown menu for the current form's "EXAMPLE" top-level menu item
 // with two items and a separator

 $Insert PS_Menu_Equates
 $insert MSWin_Menu_Equates

 MenuStruct = ""
 MenuID = @Window : ".MENU.EXAMPLE"

 ItemStruct = ""
 ItemStruct<0,0,MENUPOS_TYPE$> = MENUTYPE_ITEM$
 ItemStruct<0,0,MENUPOS_END$> = FALSE$
 ItemStruct<0,0,MENUPOS_NAME$> = MenuID : ".OPEN_SESAME"
 ItemStruct<0.0,MENUPOS_TEXT$> = "Open Sesame"

 MenuStruct<0,-1> = ItemStruct

 ItemStruct = ""
 ItemStruct<0,0,MENUPOS_TYPE$> = MENUTYPE_SEPARATOR$$
 ItemStruct<0,0,MENUPOS_END$ = FALSE$
 ItemStruct<0.0,MENUPOS_NAME$ = MenuID : ".SEP101"
 ItemStruct<0.0,MENUPOS_TEXT$> = "SEP101"

 MenuStruct<0,-1> = ItemStruct

 ItemStruct = ""
 ItemStruct<0,0,MENUPOS_TYPE$> = MENUTYPE_ITEM$
 ItemStruct<0,0,MENUPOS_END$> = TRUE$
 ItemStruct<0,0,MENUPOS_NAME$> = MenuID : ".CLOSE_SESAME"
 ItemStruct<0.0,MENUPOS_TEXT$> = "Close Sesame"

 MenuStruct<0,-1> = ItemStruct

 IsOK = Exec_Method(@Window, "TRACKDROPDOWNMENU", MenuID, MenuStruct)

See also

Common GUI MENU event, WINDOW DROPDOWNMENU event.

UPDATEROW method

Description

Updates the data associated with the primary table of a data-bound form without

updating data-bound controls.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "UPDATEROW", NewRow)

Parameters

Name Required Description

NewRow Yes New data for the row.

Returns

The TRUE$ if the row was updated successfully, or FALSE$ otherwise.

Remarks

This method is essentially the same as setting the ROW property except that the

controls are not updated. This can be useful when updating data columns that are

not bound to a control without unnecessarily re-populating those that are, such as

just before a WRITE operation for example. SAVEWARN will be set to TRUE$.

Example

 // Example - Update column <20> of the current row without reloading
 // any data-bound controls

 $Insert Logical

 RowData = Get_Property(@Window, "ROW")
 RowData<20> = TRUE$

 Call Exec_Method(@Window, "UPDATEROW", RowData)

See Also

WINDOW ROW property, WINDOW ID property, WINDOW WRITE event.

WRITEROW method

Description

Writes the data contains in the specified data-bound form to the database.

Syntax

 Status = Exec_Method(CtrlEntID, "READROW", RowID)

Parameters

Name Required Description

RowID No If specified this is the ID to use when writing the data to the

database. If this is different to the ID of the currently

loaded row a "Save As" operation is performed, and the

data in the key controls updated to reflect this.

For a multi-table form RowID should be an @fm-delimited

array of keys that matches the order of the tables in the

form's join specification:

i.e.

 rowID<1> = Key for primary table

 rowID<2> = Key for first subsidiary table

 rowID<3> = Key for second subsidiary table

 rowID<n> = Key for nth subsidiary table

etc.

If null (the default) then the data entered in the key-

controls is extracted to build the RowID used to write the

row.

Returns

The WRITE event status. If this is not null then an error has occurred or the user has

cancelled the process.

Remarks

This method triggers the form's WRITE event.

Example

 // Example - Write the data in the current form using a new ID

 RowID = "AS123*EF"

 WriteStatus = Exec_Method(@Window, "WRTEROW", RowID)
 If BLen(WriteStatus) Then
 // Error or cancelled...
 End

See Also

WINDOW CLEARONWRITE property, WINDOW ID property, WINDOW ROW property,

WINDOW READROW method, WINDOW, CLEAR event, WINDOW WRITE event.

WINDOW Events

The WINDOW object supports the following events:

Name Description

ACTIVATED Occurs when a form is activated.

ARRANGEICONS Arranges all minimized MDI Child forms for an MDI

frame form.

CASCADE Arranges all MDI Child forms into a cascading layout

for an MDI frame form.

CLEAR Occurs when data is cleared from a data-bound form.

CLOSE Occurs when a form is being closed.

CREATE Occurs when a form is created.

DBLCLK Occurs when a user double-clicks the mouse on a

form.

DELETE Occurs when data is cleared from a data-bound form.

DROPDOWNMENU Occurs when a top-level item on a form's menu bar is

selected.

ENDDIALOG Occurs when an asynchronous dialog box returns a

value to its owner form.

FORMSTATECHANGED Occurs when the "form state" of a form changes.

INACTIVATED Occurs when a form becomes inactive.

IXLOOKUP Occurs when a form shows an Index Lookup dialog

box.

MDICHILDSTATECHANGED Occurs when the "form state" of an MDI Child form

changes.

MDISELECT Occurs when a user selects the "More Windows…" item

from the "Window" menu on an MDI Frame form.

PAGE Pseudo-method used to change the current page of

a form.

QBFABS Occurs when the form loads a row in a QBF result list

using a position index.

QBFCLOSE Occurs when a form's QBF session is closed.

QBFFIRST Occurs when the form loads the first row in a QBF result

list.

QBFINIT Occurs when a QBF session is started for a form.

QBFLAST Occurs when the form loads the last row in a QBF result

list.

QBFLOADID Occurs when the form loads a row from the QBF result

list using a specified key.

QBFLOADLIST Occurs when the form needs to obtain the name of a

saved list of keys to load into its QBF result list.

QBFNEXT Occurs when the form loads the next row in a QBF

result list.

QBFPREV Occurs when the form loads the previous row in a QBF

result list.

QBFQUERY Occurs when the user wished to execute a "raw" QBF

SELECT statement

QBFRUN Occurs when the form uses the entered query data to

search the database and load the QBF result list.

QBFTABLE Occurs when a form's QBF result list is about to be

displayed.

READ Occurs when data is read from the database into a

data-bound form.

SCALED Occurs when the scaling factor of a form changes.

TILE Arranges all MDI Child forms into a tiled layout for an

MDI frame form.

VISUALSTYLECHANGED Occurs when Window’s visual styling changes.

WRITE Occurs when data is written from a data-bound form

to the database.

The following Common GUI Object events are also supported:

• BUTTONDOWN

• BUTTONUP

• CONTEXTMENU

• DROPFILES

• HELP

• HSCROLL

• INITCONTEXTMENU

• LOSTCAPTURE

• MOUSEMOVE

• NOTES

• OMNIEVENT

• OPTIONS

• SYSMSG

• TIMER

• VSCROLL

• WINMSG

The following Container Object API events are also supported:

• PAGECHANGED

• SIZE

ACTIVATED event

Description

Occurs when a form is activated.

Syntax

 bForward = ACTIVATED(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form object receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system event handler for ACTIVATED raises a FORMSTATECHANGED event.

For more information on this event please refer to the Windows documentation

regarding WM_ACTIVATE window message on the Microsoft website.

Example

 Function ACTIVATED(CtrlEntID, CtrlClassID)

 // Example - ACTIVATED event for an MDI child form to let it parent frame
 // know that is has been activated so it may set its menu items correctly

 MDIFrame = Get_Property(CtrlEntID, "MDIFRAME")

 // Assume that the frame uses an OMNIEVENT handler to respond to the
 // child being activated with a message of "CHILD_ACTIVATED" and the
 // child ID as the first parameter

 EvStatus = Exec_Method(MDIFrame, "SENDEVENT", "OMNIEVENT", |
 "CHILD_ACTIVATED", CtrlEntID)

 Return TRUE$

See Also

Common GUI FOCUS property, SYSTEM FOCUS property, WINDOW ACTIVE property,

WINDOW FOCUS property, WINDOW FORMSTATECHANGED event, WINDOW

INACTIVATED event.

ARRANGEICONS event

Description

Arranges all minimized MDI Child forms for an MDI frame form.

Syntax

 bForward = ARRANGEICONS(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW")

.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler for this event calls the MDIICONARRANGE method to

perform the arrange operation, and because of this it has been deprecated in favor

of that method. It is implemented only for backwards compatibility with earlier

versions of OpenInsight.

(Note that this event is not a "true" event as such as it is never triggered by the PS, it

can only be "manually" triggered by the developer in an application (typically from

an MDI Window menu item) – it is actually a method masquerading as an event).

Please see the documentation for the WM_MDIICONARRANGE message on the

Microsoft website for more details.

Example

N/a.

See Also

WINDOW MDIICONARRANGE method.

CASCADE event

Description

Arranges all MDI Child forms into a cascading layout for an MDI frame form.

Syntax

 bForward = CASCADE(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler for this event calls the MDICASCADE method to

perform the cascade operation, and because of this it has been deprecated in

favor of that method. It is implemented only for backwards compatibility with earlier

versions of OpenInsight.

(Note that this event is not a "true" event as such as it is never triggered by the PS, it

can only be "manually" triggered by the developer in an application (typically from

an MDI Window menu item) – it is actually a method masquerading as an event).

Please see the documentation for the WM_MDICASCADE message on the Microsoft

website for more details.

Example

N/a.

See Also

WINDOW MDICASCADE method.

CLEAR event

Description

Occurs when data is cleared from a data-bound form.

Syntax

 bForward = CLEAR(CtrlEntID, CtrlClassID, bSaveKey, bSuppressWarning |

 bMaintainFocus)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

bSaveKey This is a boolean value. If TRUE$ then the controls bound to key columns

will not be cleared.

bSuppressWarning This is a boolean value. If TRUE$ then the user will not be warned if they

have unsaved changes in the form before it is cleared.

bMaintainFocus This is a boolean value. If TRUE$ then the focus is not moved. By default it

is moved to the first control in the tab-order.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The CLEAR event has a system-level handler that performs the following tasks:

• If the form is cleared while browsing a QBF result list, then a QBFNEXT event is

raised to move to the next record instead.

• If the form is cleared while the QBFSTATUS property is QBFInitialize then a

QBFCLOSE event is raised to clear the form instead.

If neither of these conditions apply the normal CLEAR process is followed:

• If the form's SUPPRESSSAVEWARN property is FALSE$ and the

bSuppressWarning parameter is FALSE$ then:

o Update the form's SAVEWARN property if data in the currently focused

control has changed.

o Check the SAVEWARN property and warns the user of any unsaved

changes if the bSuppressWarning flag is FALSE allowing the operation

to be cancelled. If so, then the clear operation is stopped here.

• Reset the form's SAVEWARN property to FALSE$

• Unlock any data-rows locked by the form.

• If bSaveKey is FALSE$ then clear data in the data-bound key controls

• Clear the contents of the data-bound controls.

• Reset the form's NEWROW property to FALSE$

• If bMaintainFocus is FALSE$ move the focus to the first control in the form's tab

order.

A CLEAR event will be triggered by the system in the following circumstances:

• From a READ event, if the read operation is cancelled or fails.

• From a WRITE event, if the CLEARONWRITE property is TRUE$.

• From a DELETE event.

Applications needing to execute a clear operation programmatically should use the

WINDOW CLEARROW method rather than using the Send_Event stored procedure to

invoke a CLEAR event directly (as was the case in previous versions of OpenInsight).

Example

 Function CLEAR(CtrlEntID, CtrlClassID, bSaveKey, bSuppressWarning, bMaintainFocus)

 // Example - CLEAR event script that removes some information from a STATIC
 // control called TXT_INFO that is not data-bound.
 $Insert RTI_SSP_Equates

 // First let the system event handler perform the clear in case the user cancels it
 Call Set_EventStatus(SETSTAT_OK$)
 Call Forward_Event(bSaveKey, bSuppressWarning, bMaintainFocus)
 If Get_EventStatus() Then
 // Assume cancelled or error
 Null
 End Else
 Call Set_Property_Only(@Window : ".TXT_INFO", "TEXT", "")
 End

 // Return FALSE$ to stop the event chain as we've already forwarded to the
 // system CLEAR event handler above.

 Return FALSE$

See Also

WINDOW CLEARROW method, WINDOW READ event, WINDOW SYSMSG event,

WINDOW WRITE event.

CLOSE event

Description

Occurs when a form is being closed.

Syntax

 bForward = CLOSE(CtrlEntID, CtrlClassID, CancelFlag, CloseFlags)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

CancelFlag A boolean value used to check the response from SYSMSG calls. This is always

set to FALSE$ when the CLOSE event is executed, it can be set to TRUE$ if the

user cancels the CLOSE attempt.

CloseFlags This is an @Fm-delimited array with this following structure (currently there is

only one field):

 <1> If TRUE$ then suppress SAVEWARN processing

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level CLOSE event handler performs the following tasks:

• If the suppress SAVEWARN flag is not set (or the form's SUPPRESSSAVEWARN

property is FALSE$) then:

o Update the form's SAVEWARN property if data in the currently focused

control has changed.

o Check the SAVEWARN property and warn the user of any unsaved

changes, giving them the opportunity to save, ignore or cancel:

▪ Choosing save performs a write operation and proceeds to

close the form if successful, otherwise the close operation is

stopped.

▪ Choosing cancel stops the form from closing.

• The CLOSE quick event handler is executed (if defined) and the event status

checked – if it returns anything other than FALSE$ the operation is cancelled.

• Any forms owned by the current form are closed. If any owned forms cannot

be closed the entire close operation is cancelled.

• If the current form is an MDI Frame form, then any MDI Child forms are closed.

If any child forms cannot be closed the entire close operation is cancelled.

• All database locks held by the form are released.

• The form is removed from screen via the HIDE method.

• The form is terminated via the End_Window stored procedure.

Care should be taken when closing a form from an event that is raised from one of

the form's own child controls. In this case it is always better to set the CloseAsync

flag in the CLOSE method so that the current event has chance to finish executing

before the form is destroyed.

Applications needing to execute a close operation programmatically should use the

WINDOW CLOSE method rather than using the Send_Event or Post_Event stored

procedures to invoke a CLOSE event directly (as was the case in previous versions of

OpenInsight).

Example

 Function CLOSE(CtrlEntID, CtrlClassID, CancelFlag, CloseFlags)

 // Example - CLOSE event script - let the system handler execute via a call
 // to formward_event, and cleanup resources if the form was closed.
 $Insert RTI_SSP_Equates

 Call Set_EventStatus(STESTAT_OK$)
 Call Forward_Event(CancelFlag, CloseFlags)
 If Get_EventStatus() Then
 // Form wasn't closed
 Return FALSE$
 End

 // Final check - just in case someone forgot to set the EventStatus
 If Get_Property(CtrlEntID, "HANDLE") Else
 // Form wasn't closed
 Return FALSE$
 End

 // Now be very careful, as the form no longer exists, so try not to
 // reference it from this point onwards (especially any synthetic
 // properties)

 GoSub CleanAllTheThings

 // Return FALSE$ to stop the event chain as we've already forwarded to the
 // system CLOSE event handler above.

 Return FALSE$

See Also

WINDOW SAVEWARN property, WINDOW CLOSE method, WINDOW HIDE method,

End_Window stored procedure.

CREATE event

Description

Occurs when a form is created.

Syntax

 bForward = CREATE(CtrlEntID, CtrlClassID, CreateParam)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

CreateParam Data passed from the method that created the form.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system level event handler for CREATE.

Example

 Function CREATE(CtrlEntID, CtrlClassID, CreateParam)

 // Example CREATE event. Assume this is a non-visible data bound form and we have
 // been passed the key to load in the CreateParam argument

 CloseForm = FALSE$
 If BLen(CreateParam) Then
 EvStatus = Exec_Method(@Window, "READROW", CreateParam)
 If BLen(EvStatus) Then
 CloseForm = TRUE$; // Read Failed - close the form
 End
 End

 If CloseForm Then
 Call Exec_Method(@Window, "CLOSE", TRUE$, TRUE$)); // Async
 End Else
 Call Exec_Method(@Window, "SHOW"); // Loaded OK - show the form
 End

 Return Not(CloseForm)

See Also

SYSTEM SHOWDIALOG method, SYSTEM STARTFORM method, WINDOW

SHOWDIALOG method, WINDOW STARTFORM method, WINDOW

STARTMDICHILDFORM method, Dialog_Box stored procedure, Start_MDIChild stored

procedure, Start_Window stored procedure.

DBLCLK event

Description

Occurs when the user double-clicks the mouse button on a form.

Syntax

 bForward = DBLCLK(CtrlEntID, CtrlClassID, CtrlKey, ShiftKey, MouseButton)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

CtrlKey TRUE$ if the Ctrl key was pressed down when the double-click was triggered,

FALSE$ otherwise.

ShiftKey TRUE$ if the Shift key was pressed down when the double-click was triggered,

FALSE$ otherwise.

MouseButton Integer specifying which mouse button was double-clicked:

 "0" - Left button or middle button

 "1" - Right button

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for DBLCLK.

Example

 Function DBLCLK(CtrlEntID, CtrlClassID, CtrlKey, ShiftKey, MouseButton)

 // Example DBLCLK event. If the Ctrl key is down then load a non-modal, owned
 // child form

 If CtrlKey Then
 Call Exec_Method(@Window, "STARTFORM", "MY_INFO_FORM")
 End

 Return TRUE$

See Also

Common GUI BUTTONDOWN event, Common GUI BUTTONUP Event, Common GUI

LOSTCAPTURE event, Common GUI MOUSEMOVE event.

DELETE event

Description

Occurs when the data row loaded into a data-bound form is deleted from the

database.

Syntax

 bForward = DELETE(CtrlEntID, CtrlClassID, bSuppressWarning)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

bSuppressWarning This is a boolean value. If TRUE$ then the delete operation should be

unconditional, otherwise, the user will be warned about the delete and

given the opportunity to cancel.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The DELETE event has a system-level handler that performs the following tasks:

• Checks the see if all loaded data rows are locked. If not, the user is warned

and the delete operation is aborted.

• If the bSuppressWarning parameter is FALSE$ the form displays a message

warning the user that data is about to be deleted, giving them an

opportunity to cancel the process.

• The data row is deleted from the database.

• The SAVEWARN property is reset to FALSE$.

• If the row was deleted while browsing a QBF result list, the list is updated and

the next item in the list loaded, otherwise a CLEAR event is raised to reset the

form's data-bound controls to their default state.

A DELETE event is never triggered by the system – it is only triggered by user action or

developer code.

Applications needing to execute a delete operation programmatically should use

the WINDOW DELETEROW method rather than using the Send_Event stored

procedure to invoke a DELETE event directly (as was the case in previous versions of

OpenInsight).

Example

 Function DELETE(CtrlEntID, CtrlClassID, bSuppressWarning)

 // Example - DELETE event script that checks to see if the user has rights to
 // perform the delete
 $Insert RTI_SSP_Equates
 $Insert EvErrors

 IsOK = TRUE$
 GoSub IsTheUserOKToDeleteRows ; // whatever
 If IsOK Else
 // Failed the check - warn the user and stop here
 Call Exec_Method(@Window, "SHOWMESSAGE", "What do you think you are doing Dave?")
 Call Set_EventStatus(SETSTAT_ERR$, EV_VALIDERR$)
 Return FALSE$
 End

 // Assume single table form.
 TableID = Get_Property(@Window, "TABLE")
 RowID = Get_Property(@Window, "ID")

 // Now let the system event handler perform the DELETE in case we have a problem
 Call Set_EventStatus(SETSTAT_OK$)
 Call Forward_Event(bSuppressWarning)
 If Get_EventStatus() Then
 // Assume error or cancelled
 Null
 End Else
 // Update the audit log...
 Call Update_Some_Audit Log(@UserName : " deleted" : TableID : " " : RowID)
 End

 // Return FALSE$ to stop the event chain as we've already forwarded to the
 // system DELETE event handler above.

 Return FALSE$

See Also

WINDOW SAVEWARN property, WINDOW CLEARROW method, WINDOW DELETEROW

method, WINDOW CLEAR event, WINDOW SYSMSG event.

DROPDOWNMENU event

Description

Occurs when a top-level item on a form's menu bar is selected and gives a chance

for the application to modify the menu before it is displayed.

Syntax

 bForward = DROPDOWNMENU(CtrlEntID, CtrlClassID, menuID, menuStruct)

Parameters

Name Description

CtrlEntID Fully qualified name of the form object receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

MenuID Contains the fully qualified name of the top-level menu item to "drop-down".

MenuStruct A dynamic array containing the executable structure of the menu.

Note that this structure does not include the usual menu header fields.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler for DROPDOWNMENU performs the following tasks:

• The DROPDOWNMENU quick event handler is executed (if defined) and the

event status checked – if it returns anything other than FALSE$ the operation is

cancelled.

• If the menu item being selected is the "Window" item on an MDI Frame form

then the details of the first ten MDI child forms are appended to the

MenuStruct array – this is so they may be activated from the dropdown menu.

If there are more than ten then a "More…" item is also appended which will

trigger an "MDISELECT" event when selected.

• The dropdown menu is displayed via the TRACKDROPDOWNMENU method.

Example

 Function DROPDOWNMENU(CtrlEntID, CtrlClassID, menuID, menuStruct)

 // Example DROPDOWNMENU event code - check to see which clipboard items should
 // be enabled if this is the "Edit" menu item
 $Insert PS_Menu_Equates
 $insert PS_Equates

 Begin Case
 Case (MenuID == @Window : ".MENU.EDIT")
 // Get the current focus and it's EditState
 FocusID = Get_Property("SYSTEM", "FOCUS")
 EditState = Get_Property(FocusID, "EDITSTATEFLAGS")

 xCount = FieldCount(MenuStruct, @Vm)
 For X = 5 to XCount
 If (MenuStruct<0,X>[1,1] == "@") Then
 Null ; // Ignore - it's an imagelist header
 End Else
 If (MenuStruct<0,X,MENUPOS_TYPE$> == MENUTYPE_ITEM$) Then
 ItemName = MenuStruct<0,X,MENUPOS_NAME$>[-1,"B."]
 DisableItem = FALSE$
 Begin Case
 Case (ItemName = "UNDO")
 DisableItem = (EditState<PS_ESF_CANUNDO$> != TRUE$)
 Case (ItemName = "CUT")
 DisableItem = (EditState<PS_ESF_CANCUT$> != TRUE$)
 Case (ItemName = "COPY")
 DisableItem = (EditState<PS_ESF_CANCOPY$> != TRUE$)
 Case (ItemName = "PASTE")
 DisableItem = (EditState<PS_ESF_CANPASTE$> != TRUE$)
 End Case

 If (DisableItem) Then
 MenuStruct<0,X,MENUPOS_GREY$> = TRUE$
 End
 End
 End
 Next

 End Case

 Return TRUE$

See Also

WINDOW TRACKDROPDOWNMENU method, Common GUI CONTEXTMENU event,

WINDOW MDISELECT event.

ENDDIALOG event

Description

Occurs when an asynchronous dialog box returns a value to its owner form.

Syntax

 bForward = ENDDIALOG(CtrlEntID, CtrlClassID, DialogID, DialogValue, AsyncID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form object receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

DialogID Name of the dialog box returning the value to its owner.

DialogValue Value returned from the dialog box to its owner.

AsyncID ID passed to the dialog box by its owner when it was created.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for ENDDIALOG.

Example

 Function ENDDIALOG(CtrlEntID, CtrlClassID, DialogID, DialogValue, AsyncID)

 // Example ENDDIALOG event script - look for a return value from the
 // GET_CLIENT_DATA dialog box and assume it was passed the name of
 // the control to return the data to:

 Begin Case
 Case (DialogID == "GET_CLIENT_DATA")
 Call Set_Property_Only(AsyncID, "DEFPROP", DialogValue)
 End Case

 Return TRUE$

See Also

WINDOW SHOWDIALOG method, WINDOW SHOWPOPUP method, Dialog_Box stored

procedure, End_Dialog stored procedure.

FORMSTATECHANGED event

Description

Occurs when the “state” of a form changes. The term state refers to attributes that

can affect the visual state of the form and the enabled state of its controls, such as

being activated, reading data, clearing data etc. These actions usually require

common UI menu items and buttons to be updated, for example Save, Clear and

Delete menu items and buttons that perform the same actions.

This event is raised from the following system event handlers:

• ACTIVATED (for MDI Child forms)

• CLEAR, READ and WRITE events

• CLOSE (for MDI Child forms)

• QBF events

Syntax

 bForward = FORMSTATECHANGED(CtrlEntID, CtrlClassID, EventSource, FormState)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

EventSource Name of the event that triggered the form state change.

FormState An @Fm-delimited array of boolean flags that denote the proposed enabled

state of various common menu and toolbuttons:

 <1> Save

 <2> SaveAs

 <3> Clear

 <4> Delete

 <5> LoadPrevRow

 <6> Print

 <7> PrintPreview

 <8> Close

 <20> QBFInit

 <21> QBFRun

 <22> QBFFirst

 <23> QBFPrev

 <24> QBFNext

 <25> QBFLast

 <26> QBFPosition

 <27> QBFTable

 <28> QBFLoadList

 <29> QBFGetQuery

 <30> QBFClose

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is only raised if the form’s ALLOWFORMSTATEEVENTS property is TRUE$.

The system-level event handler for FORMSTATECHANGED performs the following

tasks:

• Builds the default FormState array based on the state of the row data loaded

into the form.

• Executes the FORMSTATECHANGED quick event handler (if defined) and

checks the event status – if it returns anything other than FALSE$ the operation

is cancelled.

• Sets the ENABLED state for a default set of items based on the flags in the

FormState array parameter.

• If the form is an MDI Child then an MDICHILDSTATECHANGED event is raised

for the parent MDI frame.

The default list of items affected by the form state is:

• MENU.FILE.SAVE

• MENU.FILE.SAVE_F9

• MENU.FILE.SAVE_ROW

• MENU.FILE.SAVE_AS

• MENU.FILE.CLEAR

• MENU.FILE.CLEAR_ROW

• MENU.FILE.DELETE

• MENU.FILE.DELETE_ROW

• MENU.FILE.PRINT

• MENU.FILE.PRINT_PREVIEW

• MENU.FILE.CLOSE

• MENU.EDIT.LOAD_PREVIOUS_DATA

• MENU.EDIT.LOAD_PREVIOUS_ROW

• MENU.QBF.INITIALIZE

• MENU.QBF.EXECUTE

• MENU.QBF.LOAD_FROM_EXTERNAL

_LIST

• MENU.QBF.LOADLIST

• MENU.QBF.GETQUERY

• MENU.QBF.NEXT

• MENU.QBF.PREVIOUS

• MENU.QBF.FIRST

• MENU.QBF.LAST

• MENU.QBF.ABSOLUTE

• MENU.QBF.GOTO_ID

• MENU.QBF.TABLE

• MENU.QBF.CLOSE

Equates for use with the FORMSTATECHANGED event can be found in the

RTI_FORMSTATE_EQUATES insert record.

Example

 Function FORMSTATECHANGED(CtrlEntID, CtrlClassID, EventSource, FormState)

 // Example - Set the state of some buttons based on the state of the form, and
 // set the Delete flag to FALSE$ if the user is not an administrator
 // (This assumes that this code runs _before_ the system event
 // handler!)

 $Insert RTI_FormState_Equates
 $Insert Logical

 // Check the user
 If (@Admin == 0) Then
 // Not an Admin - no deleting
 FormState<FormState<FSTATE_POS_DELETE$> = FALSE$
 End

 ObjxArray = @Window : ".BTN_SAVE"
 PropArray = "ENABLED"
 DataArray = FormState<FSTATE_POS_SAVE$>

 ObjxArray := @Rm : @Window : ".BTN_CLEAR"
 PropArray := @Rm : "ENABLED"
 DataArray := @Rm : FormState<FSTATE_POS_CLEAR$>

 ObjxArray := @Rm : @Window : ".BTN_DELETE"
 PropArray := @Rm : "ENABLED"
 DataArray := @Rm : FormState<FSTATE_POS_DELETE$>

 Call Set_Property_Only(ObjxArray, PropArray, DataArray)

 Return TRUE$

See Also

WINDOW ALLOWFORMSTATEEVENTS property, WINDOW ACTIVATED event, WINDOW

CLOSE event, WINDOW CLEAR event, WINDOW MDICHILDSTATECHANGED event,

WINDOW QBFABS event, WINDOW QBFCLOSE event, WINDOW QBFINIT event,

WINDOW QBFFIRST event, WINDOW QBFLAST event, WINDOW QBFLOADID event,

WINDOW QBFNEXT event, WINDOW QBFPREV event, WINDOW QBFQUERY event,

WINDOW READ event, WINDOW WRITE event.

INACTIVATED event

Description

Occurs when a form becomes inactive.

Syntax

 bForward = INACTIVATED(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for INACTIVATED.

For more information on this event please refer to the Windows documentation

regarding WM_ACTIVATE window message on the Microsoft website.

Example

 Function INACTIVATED(CtrlEntID, CtrlClassID)

 // Example - INACTIVATED event for an MDI child form to let it parent frame
 // know that is has lost the active status so it may set its menu items correctly

 MDIFrame = Get_Property(@Window, "MDIFRAME")

 // Assume that the frame uses an OMNIEVENT handler to respond to the
 // child being deactivated with a message of "CHILD_INACTIVATED" and the
 // child ID as the first parameter

 EvStatus = Exec_Method(MDIFrame, "SENDEVENT", "OMNIEVENT", |
 "CHILD_INACTIVATED", @Window)

 Return TRUE$

See Also

Common GUI FOCUS property, SYSTEM FOCUS property, WINDOW ACTIVE property,

WINDOW FOCUS property, WINDOW ACTIVATED event.

IXLOOKUP event

Description

Occurs when a form shows an Index Lookup dialog box.

Syntax

 bForward = INDEXLOOKUP(CtrlEntID, CtrlClassID, IndexedTable, SearchColumns,

 DisplayColumns, SelMode)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

IndexedTable The indexed table to search. This table must have at least one Btree index

on it.

SearchColumns Contains an @Fm-delimited list of column names to display in the dialog

that the user may search.

DisplayColumns Contains an @Fm-delimited list of columns names to show in the results

popup when a user chooses the row(s) to load into the form.

SelMode Contains an @fm delimited list of selection options:

 <1> Mode – this can be either "MULTI" or

 "SINGLE" (the default). If "MULTI"

 then the user may select more than

 one row to return.

 <2> Contains the name of the control to

 return the selected row IDs to. If

 null then the row IDs are loaded into

 the form as a QBF result list.

 This can be virtual name like "@WINDOW"

 or "@SELF" that are used in normal quick

 event programming.

 <3> If a control name is specified in

 field <2> this field contains the name

 of the property to set such as "TEXT"

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level IXLOOKUP event handler performs the following tasks:

• Parses and verifies the parameters passed to the event.

• Constructs a dialog box to display the search columns.

• Constructs a results popup to allow the user to select one or more rows from

the filtered search data.

• Returns the selected rows to the specified control or the form's QBF result list.

Example

N/a.

See Also

WINDOW QBFLIST property, WINDOW SHOWINDEXLOOKUP method.

MDICHILDSTATECHANGED event

Description

Occurs for an MDI Frame form when the “state” of an MDI Child form changes. The

term state refers to attributes that can affect the visual state of the form and the

enabled state of its controls, such as being activated, reading data, clearing data

etc. These actions usually require common UI menu items and buttons to be

updated, for example Save, Clear and Delete menu items and buttons that perform

the same actions.

This event is raised from an MDI Child form’s FORMSTATECHANGED event.

Syntax

 bForward = MDICHILDSTATECHANGED(CtrlEntID, CtrlClassID, EventSource, |

 FormState)

Parameters

Name Description

CtrlEntID Fully qualified name of the MDI Frame form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

EventSource Name of the event that triggered the form state change.

FormState An @Fm-delimited array of boolean flags that denote the proposed enabled

state of various common menu and toolbuttons – this is set by the originating

FORMSTATECHANGED event:

 <1> Save

 <2> SaveAs

 <3> Clear

 <4> Delete

 <5> LoadPrevRow

 <6> Print

 <7> PrintPreview

 <8> Close

 <20> QBFInit

 <21> QBFRun

 <22> QBFFirst

 <23> QBFPrev

 <24> QBFNext

 <25> QBFLast

 <26> QBFPosition

 <27> QBFTable

 <28> QBFLoadList

 <29> QBFGetQuery

 <30> QBFClose

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is only raised if the MDI Child form’s ALLOWFORMSTATEEVENTS property is

TRUE$.

The system-level event handler for MDICHILDSTATECHANGED performs the following

tasks:

• If the EventSource is a CLOSE event and the last MDI Child form is being

closed the flags in the FormState array are all set to FALSE$

• Executes the MDICHILDSTATECHANGED quick event handler (if defined) and

checks the event status – if it returns anything other than FALSE$ the operation

is cancelled.

• Sets the ENABLED state for a default set of items based on the flags in the

FormState array parameter.

The list of items affected by the default form state handler is:

• MENU.FILE.SAVE

• MENU.FILE.SAVE_F9

• MENU.FILE.SAVE_ROW

• MENU.FILE.SAVE_AS

• MENU.FILE.CLEAR

• MENU.FILE.CLEAR_ROW

• MENU.FILE.DELETE

• MENU.FILE.DELETE_ROW

• MENU.FILE.PRINT

• MENU.FILE.PRINT_PREVIEW

• MENU.FILE.CLOSE

• MENU.EDIT.LOAD_PREVIOUS_DATA

• MENU.EDIT.LOAD_PREVIOUS_ROW

• MENU.QBF.INITIALIZE

• MENU.QBF.EXECUTE

• MENU.QBF.LOAD_FROM_EXTERNAL

_LIST

• MENU.QBF.LOADLIST

• MENU.QBF.GETQUERY

• MENU.QBF.NEXT

• MENU.QBF.PREVIOUS

• MENU.QBF.FIRST

• MENU.QBF.LAST

• MENU.QBF.ABSOLUTE

• MENU.QBF.GOTO_ID

• MENU.QBF.TABLE

• MENU.QBF.CLOSE

Equates for use with the MDICHILDSTATECHANGED event can be found in the

RTI_FORMSTATE_EQUATES insert record.

Example

 Function MDICHILDSTATECHANGED(CtrlEntID, CtrlClassID, EventSource, FormState)

 // Example - Set the state of some buttons based on the state of the child form

 $Insert RTI_FormState_Equates
 $Insert Logical

 ObjxArray = @Window : ".BTN_SAVE"
 PropArray = "ENABLED"
 DataArray = FormState<FSTATE_POS_SAVE$>

 ObjxArray := @Rm : @Window : ".BTN_CLEAR"
 PropArray := @Rm : "ENABLED"
 DataArray := @Rm : FormState<FSTATE_POS_CLEAR$>

 ObjxArray := @Rm : @Window : ".BTN_DELETE"
 PropArray := @Rm : "ENABLED"
 DataArray := @Rm : FormState<FSTATE_POS_DELETE$>

 Call Set_Property_Only(ObjxArray, PropArray, DataArray)

 Return TRUE$

See Also

Common GUI ENABLED property, WINDOW ALLOWFORMSTATEEVENTS property,

WINDOW MDIACTIVE property, WINDOW MDIFRAME property, WINDOW ACTIVATED

event, WINDOW CLOSE event, WINDOW FORMSTATECHANGED event.

MDISELECT event

Description

Occurs when the user selects the "More Windows…" item from an MDI Frame form's

"Windows" menu.

Syntax

 bForward = MDISELECT(CtrlEntID, CtrlClassID, activeID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

ActiveID Contains either:

• The name of the MDI Child form to activate, or

• "-1" (the default) to show the RTI_MDISELECT dialog box – this allows

the user to select an MDI Child form to activate.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system level event for MDISELECT performs the following tasks:

• The MDISELECT quick event handler is executed (if defined) and the event

status checked – if it returns anything other than FALSE$ the event is

cancelled.

• If ActiveID contains the name of a valid MDI child form it is activated,

otherwise the the RTI_MDISELECT dialog box is displayed allow a user to

activate an MDI child form.

• Returns FALSE$ because the event has been forwarded when checking the

quick event handler as above.

Example

N/a.

See Also

WINDOW MDIACTIVE property, WINDOW MDIFRAME property, WINDOW ACTIVATED

event, WINDOW INACTIVATED event.

PAGE event

Description

Pseudo-method used to change the current page of a form.

Syntax

 bForward = PAGE(CtrlEntID, CtrlClassID, PageAction)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

PageAction May be one of the following values:

• An integer that specifies the page to display. If this is greater than

the page count then the last page is displayed, of less than 1 then

the first page is displayed.

• "+" means go to the next page, and do not wrap around to the first

page if on the last page.

• "++" means go to the next page and wrap around to the first page if

on the last page.

• "-" means go to the previous page and do not wrap around to the

last page if on the first page.

• "--" means go to the previous page and wrap around to the last

page if on the first page.

• "L" means go to the last page.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This is not really an event as such as it is never triggered in response to some other

action – rather it is used as a method to change the current page on a form.

The system-level PAGE event handler uses the PageAction parameter to set the

form's CURRENTPAGE property.

This event is considered deprecated in favor of the SETPAGE method.

Example

N/a.

See Also

Container API CURRENT page property, Container API PAGECOUNT property,

Container API SETPAGE method.

QBFABS event

Description

Occurs when the form loads a row in a QBF result list using a position index.

Syntax

 bForward = QBFABS(CtrlEntID, CtrlClassID, AbsPos)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

AbsPos If specified this contains the index of the row to display (i.e. the "absolute"

position).

If may also be null to allow the user to enter the index via a message box.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered by setting the QBFPOS property.

The system level event for QBFABS performs the following tasks:

• If there is only one row in the QBF result list a message is displayed and the

QBFABS operation is cancelled.

• If AbsPos is null then a message is displayed to allow the user to enter the

index of the data row to display. If an invalid index is entered the user is

warned and the QBFABS operation is cancelled.

• The form's SAVEWARN property is checked and the user warned of any

unsaved changes with the option to cancel the QBFABS operation, ignore the

changes, or save the data before continuing.

• If the QBFREADMODE property is OnlyRead then the READROW method is

used to load the data row into the form, otherwise the custom QBF form load

process is used instead. If QBFREADMODE is OBFThenRead a READ event is

then triggered.

• The index into the QBF result list (QBFPOS property) is updated.

• The form's caption is updated to show the current index in the QBF result list.

• If displayed, the QBFTABLE result list dialog box is synchronized with the new

index.

• The form's SAVEWARN property is set to FALSE$.

Example

N/a.

See Also

WINDOW QBFPOS property, WINDOW QBFREADMODE property, WINDOW

QBFSHOWFIRST method, QBFSHOWLAST method, WINDOW QBFSHOWNEXT method,

WINDOW QBFSHOWPREV method.

QBFCLOSE event

Description

Occurs when a form's QBF session is closed.

Syntax

 bForward = QBFCLOSE(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFCLOSESESSION method.

The system level event for QBFCLOSE performs the following tasks:

• Checks the form's SAVEWARN property and warns the user of any unsaved

changes. If so, then the user is warned and given the option to cancel the

QBFCLOSE operation, ignore the changes, or save the data before

continuing.

• Clears the data-bound controls in the form and unlocks the row if needed

(Note – this is via an internal method and not via a CLEARROW method, i.e.

the CLEAR event is not triggered).

• The QBFSTATUS is set to QBFInactive, and the QBFPOS and QBFLIST properties

are cleared,

• Enabled/read-only controls that were enabled when the QBF session was

started are disabled again if necessary.

• The form's caption is reset.

• A FORMSTATECHANGED event is raised (with a "QBFCLOSE" EventSource

parameter).

Example

N/a.

See Also

WINDOW QBFSTATUS property, WINDOW QBFINITSESSION method, WINDOW

QBFCLOSESESSION method, WINDOW FORMSTATECHANGED event, WINDOW

QBFINIT event.

QBFFIRST event

Description

Occurs when the form loads the first row in a QBF result list.

Syntax

 bForward = QBFFIRST(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFSHOWFIRST method.

The system level event for QBFFIRST performs the following tasks:

• The form's SAVEWARN property is checked and the user warned of any

unsaved changes with the option to cancel the QBFABS operation, ignore the

changes, or save the data before continuing.

• If the QBFREADMODE property is OnlyRead then the READROW method is

used to load the first data row from the QBF results list into the form, otherwise

the custom QBF form load process is used instead. If QBFREADMODE is

OBFThenRead a READ event is then triggered.

• The index into the QBF result list (QBFPOS property) is updated.

• The form's caption is updated to show the current index in the QBF result list.

• If displayed, the QBFTABLE result list dialog box is synchronized with the new

index.

• The form's SAVEWARN property is set to FALSE$.

Example

N/a.

See Also

WINDOW QBFPOS property, WINDOW QBFREADMODE property, WINDOW

QBFSHOWLAST method, WINDOW QBFSHOWNEXT method, WINDOW QBFSHOWPREV

method.

QBFINIT event

Description

Occurs when QBF session is initialized for a form.

Syntax

 bForward = QBFINIT(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFINITSESSION method.

The system level event for QBFINIT performs the following tasks:

• Checks the form's SAVEWARN property and warns the user of any unsaved

changes. If so, then the user is warned and given the option to cancel the

QBFINIT operation, ignore the changes, or save the data before continuing.

• Updates the form's caption to show that the QBF session is active.

• The QBFSTATUS is set to QBFInitialize (Note that LOSTFOCUS data validation

and conversion on controls will not be performed while the QBFSTATUS is

QBFInitialize).

• Clears the data-bound controls in the form (Note: this is via an internal

method and not via a CLEARROW method, i.e. the CLEAR event is not

triggered).

• Enables all non-primary disabled/read-only data-bound controls and read-

only/protected data-bound Edit Table columns

Example

 Function QBFINIT(CtrlEntID, CtrlClassID)

 // Example: allow the system QBFINIT to execute, and if sucsessful raise an
 // OMNIEVENT event on the parent MDI frame form to let it know the state of
 // the child.

 Call Set_EventStatus(SETSTAT_OK$)
 Call Forward_Event()
 If Get_EventStatus() Then
 // Assume cancelled or error
 Return FALSE$
 End

 MDIFrame = Get_Property(@Window, "MDIFRAME")

 // Assume that the frame uses an OMNIEVENT handler to respond to the
 // child being initialized with a message of "CHILD_QBFINIT" and the
 // child ID as the first parameter

 EvStatus = Exec_Method(MDIFrame, "SENDEVENT", "OMNIEVENT", |
 "CHILD_QBFINIT", CtrlEntID)

 // Return FALSE$ to stop the event chain as we've already forwarded to the
 // system QBFINIT event handler above.

 Return FALSE$

See Also

Common GUI CONV property, Common GUI VALID property, WINDOW QBFSTATUS

property, WINDOW QBFCLOSESESSION method , WINDOW QBFINITSESSION method,

WINDOW QBFRUNQUERY method, Common GUI LOSTFOCUS event, WINDOW

QBFCLOSE event, WINDOW QBFRUN event.

QBFLAST event

Description

Occurs when the form loads the last row in a QBF result list.

Syntax

 bForward = QBFLAST(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFSHOWLAST method.

The system level event for QBFLAST performs the following tasks:

• The form's SAVEWARN property is checked and the user warned of any

unsaved changes with the option to cancel the QBFABS operation, ignore the

changes, or save the data before continuing.

• If the QBFREADMODE property is OnlyRead then the READROW method is

used to load the last data row from the QBF results list into the form, otherwise

the custom QBF form load process is used instead. If QBFREADMODE is

OBFThenRead a READ event is then triggered.

• The index into the QBF result list (QBFPOS property) is updated.

• The form's caption is updated to show the current index in the QBF result list.

• If displayed, the QBFTABLE result list dialog box is synchronized with the new

index.

• The form's SAVEWARN property is set to FALSE$.

Example

N/a.

See Also

WINDOW QBFPOS property, WINDOW QBFREADMODE property, WINDOW

QBFSHOWFIRST method, WINDOW QBFSHOWNEXT method, WINDOW QBFSHOWPREV

method.

QBFLOADID event

Description

Occurs when the form loads a row in a QBF result list using a row ID.

Syntax

 bForward = QBFLOADID(CtrlEntID, CtrlClassID, RowID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

RowID If specified this contains the ID of the row to display. It must be in the QBF

result list.

If may also be null to allow the user to enter the ID via a message box.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered by the QBFGOTOID method.

The system level event for QBFLOADID performs the following tasks:

• If RowID is null then a message is displayed to allow the user to enter the ID of

the data row to display. If an invalid ID is entered the user is warned and the

QBFLOADID operation is cancelled.

• The form's SAVEWARN property is checked and the user warned of any

unsaved changes with the option to cancel the QBFLOADID operation,

ignore the changes, or save the data before continuing.

• If the QBFREADMODE property is OnlyRead then the READROW method is

used to load the data row into the form, otherwise the custom QBF form load

process is used instead. If QBFREADMODE is OBFThenRead a READ event is

then triggered.

• The index into the QBF result list (QBFPOS property) is updated.

• The form's caption is updated to show the current index in the QBF result list.

• If displayed, the QBFTABLE result list dialog box is synchronized with the new

index.

• The form's SAVEWARN property is set to FALSE$.

Example

N/a.

See Also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFREADMODE

property, WINDOW QNFGOTOID method, WINDOW QBFSHOWFIRST method,

QBFSHOWLAST method, WINDOW QBFSHOWNEXT method, WINDOW QBFSHOWPREV

method.

QBFLOADLIST event

Description

Occurs when the form needs to obtain the name of a saved list of keys to load into

its QBF result list.

Syntax

 bForward = QBFLOADLIST(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFLOADSAVEDLIST method.

The system level event for QBFLOADLIST performs the following tasks:

• Displays a dialog allowing the user to choose the source of the list. This may

be an entry in the TCL Query Table, or the name of a saved list in the SYSLISTS

table.

• Once the source has been determined the keys are extracted and loaded

into the form's QBFLIST property.

Example

N/a.

See Also

WINDOW QBFLIST property, WINDOW QBFLOADSAVEDLIST method.

QBFNEXT event

Description

Occurs when the form loads the next row in a QBF result list.

Syntax

 bForward = QBFNEXT(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFSHOWNEXT method.

The system level event for QBFNEXT performs the following tasks:

• The form's SAVEWARN property is checked and the user warned of any

unsaved changes with the option to cancel the QBFABS operation, ignore the

changes, or save the data before continuing.

• The index into the QBF result list is calculated for the next item (If it is already

set to the last item it is set to show the first item instead).

• If the QBFREADMODE property is OnlyRead then the READROW method is

used to load the specified data row from the QBF results list into the form,

otherwise the custom QBF form load process is used instead. If

QBFREADMODE is OBFThenRead a READ event is then triggered.

• The index into the QBF result list (QBFPOS property) is updated.

• The form's caption is updated to show the current index in the QBF result list. If

displayed, the QBFTABLE result list dialog box is synchronized with the new

index.

• The form's SAVEWARN property is set to FALSE$.

Example

N/a.

See Also

WINDOW QBFPOS property, WINDOW QBFREADMODE property, WINDOW

QBFSHOWFIRST method, WINDOW QBFSHOWLAST method, WINDOW QBFSHOWPREV

method.

QBFPREV event

Description

Occurs when the form loads the previous row in a QBF result list.

Syntax

 bForward = QBFPREV(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFSHOWPREV method.

The system level event for QBFPREV performs the following tasks:

• The form's SAVEWARN property is checked and the user warned of any

unsaved changes with the option to cancel the QBFABS operation, ignore the

changes, or save the data before continuing.

• The index into the QBF result list is calculated for the previous item (If it is

already set to the first item it is set to show the last item instead).

• If the QBFREADMODE property is OnlyRead then the READROW method is

used to load the specified data row from the QBF results list into the form,

otherwise the custom QBF form load process is used instead. If

QBFREADMODE is OBFThenRead a READ event is then triggered.

• The index into the QBF result list (QBFPOS property) is updated.

• The form's caption is updated to show the current index in the QBF result list.

• If displayed, the QBFTABLE result list dialog box is synchronized with the new

index.

• The form's SAVEWARN property is set to FALSE$.

Example

N/a.

See Also

WINDOW QBFPOS property, WINDOW QBFREADMODE property, WINDOW

QBFSHOWFIRST method, WINDOW QBFSHOWLAST method, WINDOW QBFSHOWNEXT

method.

QBFQUERY event

Description

Occurs when the user enters a "raw" RLIST SELECT statement to load a QBF result list.

Syntax

 bForward = QBFQUERY(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFASKQUERY method.

The system level event for QBFQUERY performs the following tasks:

• Checks to see if the QBFSTATUS is QBFInitialize, or QBFActive – if so a

QBFCLOSESESSION method is executed to return the form to a clean state,

otherwise a CLEARROW method is executed instead.

• This user is prompted to enter the RLIST SELECT statement they wish to execute.

• If they do so the form's caption is updated to indicate that a search is being

processed.

• If the search returns one or more rows a QBFSHOWFIRST method is executed

to display the first result, otherwise the user is informed that no matching rows

were found.

Example

N/a.

See Also

WINDOW QBFSTATUS property, WINDOW CLEARROW method, WINDOW

QBFCLOSESESSION method, WINDOW QBFSHOWFIRST method,

QBFRUN event

Description

Occurs when the form uses the query data entered into the data-bound controls to

search the database and load a QBF result list.

Syntax

 bForward = QBFRUN(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFRUNQUERY method.

The system level event for QBFRUN performs the following tasks:

• Checks to see if the QBFSTATUS is QBFInitialize. If not, the query operation is

cancelled.

• Updates the form's caption to indicate a query is being processed.

• Checks each data-bound control on the form to see if contains data – if so,

this is used to build an RLIST query string.

• If no query data has been entered the user is asked if they wish to select all

rows for the QBF result list instead. If not the form's caption is reset to indicate

that the QBFSTATUS is still QBFInitialize and the event is stopped.

• Otherwise, the query string is parsed and executed to search the database

for matching rows.

• If the search was unsuccessful the form returns to a QBFSTATUS of QBFInitialize

and the user can enter different search terms or close the QBF session.

• If the search is successful the resulting keys are loaded into a QBF result list,

and the enabled/read-only controls are reset. The QBFSTATUS is set to

QBFInactive and a QBFFIRST event is triggered to load the first row in the result

list.

Example

N/a.

See Also

WINDOW QBFSTATUS property, WINDOW QBFINITSESSION method, WINDOW

QBFCLOSESESSION method, WINDOW QBFRUNQUERY method, WINDOW QBFFIRST

event.

QBFTABLE event

Description

Occurs when a form's QBF result list is about to be displayed in a non-modal dialog

box, allowing the user an easy visual way of navigating it.

Syntax

 bForward = QBFTABLE(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event is triggered from the QBFSHOWTABLE method.

The system level event for QBFTABLE executes the non-modal OIWIN_QBFLISTRESULTS

dialog box that displays the rows in the QBF result list along with the data from the

data-bound controls in the form.

As the user selects a row in the dialog the QBFPOS property of the form is updated to

load the row into it.

If a row Is deleted from the form, it is also deleted from the dialog. Likewise, if data is

updated in the form it is updated in the dialog too.

Example

N/a.

See Also

WINDOW QBFLIST property, WINDOW QBFPOS property, WINDOW QBFSHOWTABLE

method.

READ event

Description

Occurs when data is read from the database into a data-bound form.

Syntax

 bForward = READ(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The READ event has a system-level handler that performs the following tasks:

• Checks the form's SAVEWARN property and warns the user of any unsaved

changes. If so, then the user is warned and given the option to cancel the

read operation (This step normally happens if the READ event is invoked

programmatically via the READROW method).

• Checks to see that all controls bound to a key part are filled. If not, the user is

warned and the read operation is aborted.

• Locks and reads the primary data row (and secondary ones if this is a multi-

table form), constructing a "row-map" of data and bound controls.

o If any locks fail the user is given the option to cancel the read

operation or continue in a "view-only mode". If cancelled the

CLEARROW method is executed to reset the form's contents.

o The form's caption is updated to reflect the view-only mode if

appropriate.

• The data in the row-map is loaded into the data-bound controls.

• The NEWROW property is set appropriately.

• The row-map is cached for use with the READPREVROW method if the

LOADPREVALWAYS property is TRUE$.

A READ event will be triggered by the system in the following circumstances:

• From the LOSTFOCUS event of controls bound to key columns when they all

contain data, and the key has been changed.

• From the READROW method.

Applications needing to execute a read operation programmatically should use the

WINDOW READROW method rather than using the Send_Event stored procedure to

invoke a READ event directly (as was the case in previous versions of OpenInsight).

Example

 Function READ(CtrlEntID, CtrlClassID)

 // Example - READ event script that adds some information to STATIC control
 // called TXT_INFO that is not data-bound after the read operation
 $Insert RTI_SSP_Equates

 // First let the system event handler perform the READ in case we have a problem
 Call Set_EventStatus(SETSTAT_OK$)
 Call Forward_Event()
 If Get_EventStatus() Then
 // Assume cancelled or error
 Null
 End Else

 KeyCode = Get_Property(@Window : ".EDL_KEYCODE, "TEXT")
 ISNCode = Get_Property(@Window : ".EDL_ISNCODE, "TEXT")

 InfoText = KeyCode : ":" : ISNCode

 Call Set_Property_Only(@Window : ".TXT_INFO", "TEXT", InfoText)
 End

 // Return FALSE$ to stop the event chain as we've already forwarded to the
 // system READ event handler above.

 Return FALSE$

See Also

WINDOW LOADPREVALWAYS property, WINDOW SAVEWARN property, WINDOW

CLEARROW method, WINDOW READPREVROW method, WINDOW READROW

method, Common GUI LOSTFOCUS event, WINDOW SYSMSG event.

TILE event

Description

Arranges all MDI Child forms into a tiled layout for an MDI frame form.

Syntax

 bForward = TILE(CtrlEntID, CtrlClassID, Orientation)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Orientation Boolean value – TRUE$ to tile vertically, of FALSE$ to tile horizontally.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler for this event calls the MDITILE method to perform the

tiling operation, and because of this it has been deprecated in favor of that

method. It is implemented only for backwards compatibility with earlier versions of

OpenInsight.

(Note that this event is not a "true" event as such as it is never triggered by the PS, it

can only be "manually" triggered by the developer in an application (typically from

an MDI Window menu item) – it is actually a method masquerading as an event).

Please see the documentation for the WM_MDITILE message on the Microsoft

website for more details.

Example

N/a.

See Also

WINDOW MDITILE method.

SCALED event

Description

This event is raised when the form’s DPI or SCALEFACTOR property is changed.

OpenInsight will automatically adjust the following properties for the form’s child

controls:

• Position and size coordinates.

• Fonts.

• Images.

The SCALED event provides the opportunity for a developer to apply any further

modifications needed to handle the new scale.

Syntax

 bForward = SCALED(CtrlEntID, CtrlClassID, OrigDpiX, OrigDpiY, OrigScaleFactor, |

 NewDpiX, NewDpiY, NewScaleFactor)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

OrigDpiX X DPI value before the scale change took place.

OrigDpiY Y DPI value before the scale change took place.

OrigScaleFactor Custom scaling factor before the scale change took place.

NewDpiX X DPI value after the scale change took place.

NewDpiY Y DPI value after the scale change took place.

NewScaleFactor Custom scaling factor after the scale change took place.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for this event.

The Windows WM_DPICHANGED message will trigger the SCALED event when the

form’s DPI is changed by moving it to a monitor with a different DPI. More

information on WM_DPICHANGED can be found on the Microsoft website.

Example

Function SCALED(CtrlEntID, CtrlClassID, OrigDpiX, OrigDpiY, OrigScaleFactor, |
 NewDpiX, NewDpiY, NewScaleFactor)

 // Example - SCALED event to set the Zoom property of an imaginary OLE preview
 // control based on the passed DPI and custom scalefactor.

 $Insert Logical

 // We are assuming that this imaginary "Zoom" property is an integer
 // value which expresses the zoom factor as a percentage, e.g.
 //
 // E.g.
 //
 // Zoom Factor Property Value
 // =========== ==============
 // 50% -> 50
 // 100% -> 100
 // 125% -> 125
 //
 // etc.
 //
 // We are going to combine the scaling factor of the DPI along with
 // the custom scale factor (if any).

 DpiFactor = (NewDpiX / 96)
 TotalFactor = DpiFactor * NewScaleFactor

 NewZoom = Int(100 * TotalFactor)

 Call Set_Property_Only(@Window : ".OLE_PREVIEW", "OLE.Zoom", NewZoom)

Return TRUE$

See Also

SYSTEM DPI property, WINDOW DPI property, WINDOW SCALEFACTOR property,

Appendix K – High DPI Programming.

VISUALSTYLECHANGED event

Description

Occurs when Window’s visual styling changes, usually in response to the user

changing colors in the Personalization Settings.

Syntax

 bForward = VISUALSTYLECHANGED(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form object receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no default event handler for the VISUALSTYLECHANGED event.

This event is raised for the following Windows messages:

• WM_DWMCOLORIZATIONCOLORCHANGED

• WM_SYSCOLORCHANGE

Further information on these messages may be found on the Microsoft web site.

Example

N/a.

See Also

SYSTEM DWMCOLORS property, SYSTEM SYSTEMFONTS property, SYSTEM THEMED

property, SYSTEM ALPHACOLOR method, SYSTEM DARKENCOLOR method, SYSTEM

LIGHTENCOLOR method, SYSTEM MIXCOLORS method.

WRITE event

Description

Occurs when data is written from a data-bound form to the database.

Syntax

 bForward = WRITE(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the form receiving the event.

CtrlClassID Type of object receiving the event (always "WINDOW").

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The WRITE event has a system-level handler that performs the following tasks:

• Triggers a LOSTFOCUS event on the control with focus to ensure that any data

it contains is properly validated. If there is a problem here the write operation

is aborted.

• Checks to see that all controls bound to a key part are filled. If not, the user is

warned and the write operation is aborted.

• Checks the see if all loaded data rows are locked. If not, the user is warned

and the write operation is aborted.

• Data is extracted from the data-bound controls into a "row-map" structure.

This is then used to update the data row columns as necessary, and each row

is then written back to the database after all its columns have been updated.

o Note that using the ATRECORD or ROW properties, or the UPDATEROW

method may cause data not bound to controls to be written back

here as well – see the individual entries for those members for more

details.

• The SAVEWARN property is reset to FALSE$.

• The NEWROW property is reset to FALSE$

• The row-map is cached for use with the READPREVROW method and the

ORIGROWVALUE property.

• The form's caption is reset to it's default state.

• If the CLEARONWRITE property is TRUE$ a CLEARROW method is executed to

reset the form's data-bound controls to their default state.

A WRITE event will be triggered by the system in the following circumstances:

• From the LOSTFOCUS event when a new key has been entered and changes

have also been made in the data-bound controls. The user is presented with

a message which allows them to save the changes, which can then execute

a write operation.

Applications needing to execute a write operation programmatically should use the

WINDOW WRITEROW method rather than using the Send_Event stored procedure to

invoke a WRITE event directly (as was the case in previous versions of OpenInsight).

Example

 Function WRITE(CtrlEntID, CtrlClassID)

 // Example - WRITE event script that performs some preliminary validation checks
 // before allowing the WRITE event to proceed. If that's OK then update an audit
 // log after the WRITE
 $Insert RTI_SSP_Equates
 $Insert EvErrors

 IsOK = TRUE$
 GoSub DoTheChecks
 If ISOK Else
 // Failed the checks - warn the user and stop here
 Call Exec_Method(@Window, "SHOWMESSAGE", "Err ... Computer says no")
 Call Set_EventStatus(SETSTAT_ERR$, EV_VALIDERR$)
 Return FALSE$
 End

 // Assume single-table form.
 TableID = Get_Property(@Window, "TABLE")
 RowID = Get_Property(@Window, "ID")

 // Now let the system event handler perform the WRITE in case we have a problem
 Call Set_EventStatus(SETSTAT_OK$)
 Call Forward_Event()
 If Get_EventStatus() Then
 // Assume error
 Null
 End Else
 // Update the audit log...
 Call Update_Some_Audit Log(@UserName : " updated " : TableID : " " : RowID)
 End

 // Return FALSE$ to stop the event chain as we've already forwarded to the
 // system WRITE event handler above.

 Return FALSE$

See Also

Common GUI ORIGROWVAL property, WINDOW ATRECORD property, WINDOW

ROW property, WINDOW SAVEWARN property, WINDOW CLEARROW method,

WINDOW READPREVROW method, WINDOW WRITEROW method, WINDOW

UPDATEROW method, Common GUI LOSTFOCUS event, WINDOW CLEAR event,

WINDOW SYSMSG event.

