
Common GUI Object API

These core properties, methods and events apply to most GUI objects (forms and

controls) except where noted in individual descriptions later.

Common GUI Properties

These core properties apply to most GUI forms and controls except where noted in

individual descriptions later.

Name Description

ACCEPTDROPFILES Specifies if an object can accept files dragged from the

Windows Explorer.

ALLOWCONTAINER Returns TRUE$ if an object is allowed to contain other

objects when using the Form Designer.

ALLPAGES Specifies if an object appears on all pages of a multi-page

Container parent.

AUTOSIZEHEIGHT Specifies if a control changes its height relative to the

height of the parent object.

AUTOSIZEWIDTH Specifies if a control changes its width relative to the width

of the parent object.

BACKCOLOR Specifies the color(s) to use when painting an object's

background.

BOTTOM Specifies the bottom coordinate of an object relative to its

parent object.

BOTTOMANCHOR Specifies if a control is anchored to the bottom of its

parent.

CANGETFOCUS Indicates if an object can receive the input focus.

CLASSNAME Returns the registered window class name for an object.

CHILDOBJECT Returns TRUE$ if an object is a "child window".

CLIENTHEIGHT Specifies height of an object's client area.

CLIENTSIZE Specifies the width and height of an object's client area.

CLIENTWIDTH Specifies width of an object's client area.

CLIPCHILDREN Specifies if the object excludes child objects from its

update region before painting itself.

CLIPSIBLINGS Specifies if the object excludes sibling objects from its

update region before painting itself.

COLUMN Specifies the database column that a control is bound to.

COMPOSITED Specifies if system double-buffering is used by an object.

CONTEXTMENU Specifies the CONTEXTMENU entity used by an object.

CONV Specifies the Output Conversion pattern for a control.

CURSOR Specifies the cursor to use when over the control.

CUSTOMPROPERTIES Specifies a list of user-defined properties to set for the

object at runtime.

DEFPROP Specifies the value of the "default property" for a control.

DEFPROPID Returns the name of a control's "default property".

DEFPROPPOS Specifies the value of a control's "default position property".

DEFPOSPROPID Returns the name of a control's "default position property".

DEFPROPRAW Specifies the value of the "default property" for a control

but without updating the RECORD/SAVEWARN properties.

DEFVALUE Specifies the default content to insert into a control when it

is empty and receives the input focus.

DESIGNMODE Returns TRUE$ if a control is in "design mode".

DESIGNSELECTED Returns TRUE$ if a control is selected in the Form Designer.

DOUBLEBUFFER Specifies if an object is using double-buffering for drawing.

DPI Returns the current DPI settings for an object.

ECHO Allows keyboard input to be turned off for a control.

EDGESTYLE Specifies the appearance of a control's non-client area

border.

ENABLED Enables or disables mouse and keyboard input for a

control.

FOCUS Specifies if the control has the system input focus.

FONT Specifies the font used when rendering text in a control.

FORECOLOR Specifies the foreground text color for a control.

GOTFOCUSVALUE Returns the value in a control from when it last received

the input focus.

HANDLE Returns the window handle (HWND) of an object.

HEIGHT Specifies the height of an object.

IMAGE Specifies the properties of an object's IMAGE sub-object at

design-time.

IMAGELIST Specifies the properties of an object's IMAGELIST sub-

object at design-time.

INVALUE Specifies the value of the "default property" for a control in

internal format.

LEFT Specifies the left-coordinate of an object relative to its

parent object.

MONITOR Returns the details of the monitor that an object is

displayed on.

MOUSECAPTURED Specifies if mouse messages are redirected to a specific

object.

NEXT Returns or updates the next control in tab order from the

specified control.

ORIGARRAY Returns the original "List" attribute from the structure used to

create the object at runtime, but in "Array" format.

ORIGBACKCOLOR Returns the original "BackColor" attribute from the structure

used to create the object at runtime.

ORIGENABLED Returns the original "Enabled" attribute from the structure

used to create the object at runtime.

ORIGFONT Returns the original "Font" attribute from the structure used

to create the object at runtime.

ORIGFORECOLOR Returns the original "ForeColor" value from the structure

used to create the object at runtime.

ORIGHEIGHT Returns the original "Height" attribute from the structure

used to create the object at runtime.

ORIGHIGH Synonym for the ORIGHEIGHT property.

ORIGLABEL Returns the original label value from the structure used to

create the object at runtime.

ORIGLEFT Returns the original Left coordinate used when the object

was created at runtime.

ORIGLIST Returns the original "List" attribute from the structure used to

create the object at runtime.

ORIGROWVALUE Returns the original data as read into a form or control

during a form's READ event.

ORIGSIZE Returns the original size attributes from the structure used to

create the object at runtime.

ORIGSTRUCT Returns the original structure used to create an object.

ORIGTEXT Returns the original text used when the object was created

at runtime.

ORIGTOP Returns the original TOP coordinate used when the object

was created at runtime.

ORIGVALUE Returns the original value used when the object was

created at runtime.

ORIGVISIBLE Returns the original "Visible" attribute from the structure

used to create the object at runtime.

ORIGWIDE Synonym for the ORIGWIDTH property.

ORIGWIDTH Returns the original "Width" attribute from the structure

used to create the object at runtime.

ORIGX Synonym for the ORIGLEFT property.

ORIGY Synonym for the ORIGTOP property.

PAGENUMBER Specifies the page number that an object should appear

on in a multi-page parent object.

PARENT Returns the parent for a specified object.

PARENTFORM Returns the parent form object for a specified object.

PART Returns the key part of a control that is bound to a

database key column.

POS Returns the position of the column, relative to the data

table structure, of a data-bound control.

PREVIOUS Returns or updates the previous control in tab order from

the specified control.

QUALIFIEDWINMSGS Returns a list of Window Messages that trigger the WINMSG

event for an object.

RECT Determines the position of a control relative to its parent

control in client area coordinates.

REDRAW Specifies if an object is allowed to update itself on screen.

REQUIRED Specifies if a control must contain data.

RIGHT Specifies the right coordinate of an object relative to its

parent object.

RIGHTANCHOR Specifies if a control is anchored to the right side of its

parent.

SCALEFACTOR Returns the scale-factor value for an object.

SCALEMETRICS Returns an array of scaling information for the specified

object.

SCALEUNITS Returns the scale-units value for an object.

SCREENRECT Returns the position of an object in screen coordinates.

SCREENSIZE Returns the position and size of an object in screen

coordinates.

SCROLLBARS Specifies which scrollbars are used with an object,

SIZE Determines the position and size of an object relative to its

parent object in client area coordinates.

STYLE Specifies the Windows Style flags for a control.

STYLEN Specifies the Windows Style flags for a control in numeric

format.

STYLEEX Specifies the Extended Windows style flags for a control.

STYLEEXN Specifies the Extended Windows style flags for a control in

numeric format.

TABLE Returns the database table that an object is bound to.

TEXT Specifies the text associated with the object.

TIMER Specifies the interval for firing an object's TIMER event.

TOOLTIP Specifies the tooltip to display for an object.

TOP Specifies the top coordinate of an object relative to its

parent object.

TRANSLUCENCY Specifies the degree of transparency applied to an

object's background.

VALID Specifies the Validation and Input conversion pattern for a

control.

VALIDMSG Specifies alternative text for a validation error message.

VISIBLE Determines if a control is visible.

WIDTH Specifies the width of an object.

ACCEPTDROPFILES property

Description

Specifies if the object can accept files dragged from the Windows Explorer.

Property Value

This property is a boolean value. If the object can accept files dragged from the

Windows Explorer this property returns TRUE$, otherwise it returns FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

When set to TRUE$, and files are dragged and dropped onto the object, a

DROPFILES event is triggered.

For more information on this property please refer to the Windows documentation

regarding the WS_EX_ACCEPTFILES extended window style and the WM_DROPFILES

message on the Microsoft website.

Example

 // Allow the LST_FILELIST ListBox control to accept files dropped from
 // the Windows Explorer

 Call Set_Property_Only(@Window : ".LST_FILELIST", "ACCEPTDROPFILES", TRUE$)

See also

Common GUI STYLEEX property, Common GUI STYLEEXN property, Common GUI

DROPFILES event.

ALLOWCONTAINER property

Description

Specifies if an object is allowed to contain another object in a parent-child

relationship.

Property Value

This property is a boolean value. If TRUE$ then the Form Designer will allow this object

to contain other objects when creating or modifying a form.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

Only forms and panel-based controls like PANEL, SIMPLEPANEL and TABBEDPANEL will

return TRUE$ for this property (It is intended more for use with the Form Designer

rather than as a "normal" developer property).

Example

 // Check to see if the current control is a container

 IsContainer = Get_Property(CtrlEntID, "ALLOWCONTAINER")

See also

Common GUI CHILDWINDOW property, Common GUI PARENT property.

ALLPAGES property

Description

Specifies if a control appears on all pages of a multi-page Container parent, such as

a Form or Panel.

Property Value

This property is a boolean value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set N/a No No No

Remarks

This property is design-time only. Use the PAGENUMBER property at runtime to

change the page that a control appears on.

Example

N/a.

See also

Common GUI PAGENUMBER property, Container CURRENTPAGE property, Container

PAGECOUNT property, Container PAGECHANGED event, WINDOW PAGE event.

AUTOSIZEHEIGHT property

Description

Specifies if a control changes its HEIGHT property relative to the height of its parent

object (Form or Panel).

For example, if the parent Form's height is increased by 40 pixels, a control with

AUTOSIZEHEIGHT set to TRUE$ will also increase its HEIGHT property by 40 pixels.

Property Value

This property is a boolean value. When Set to TRUE$ changing the control's parent

height also applies the same change to the control. When set to FALSE$ the

control's height is not changed when the parent height is changed.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

If this property is set to TRUE$ the BOTTOMANCHOR property is automatically set to

FALSE$.

The AUTOSIZEHEIGHT property is preserved and updated as necessary if the object is

moved or resized.

Example

 // Set the AUTOSIZEHEIGHT of the EDB_NOTES EditBox control to autosize it's
 // Height

 Call Set_Property_Only(@Window : ".EDB_NOTES", "AUTOSIZEHEIGHT", TRUE$)

See also

Common GUI AUTOSIZEWIDTH property, Common GUI BOTTOMANCHOR property,

Common GUI CLIENTHEIGHT property, Common GUI CLIENTSIZE property, Common

GUI HEIGHT property, Common GUI RECT property, Common GUI RIGHTANCHOR

property, Common GUI SCREENRECT property, Common GUI SCREENSIZE property,

Common GUI SIZE property, Common GUI MOVE method, Common GUI OFFSET

method, WINDOW SIZE event.

AUTOSIZEWIDTH property

Description

Specifies if a control changes its WIDTH property relative to the height of its parent

object (Form or Panel).

For example, if the parent Form's width is decreased by 50 pixels, a control with

AUTOSIZEWIDTH set to TRUE$ will also decrease its WIDTH property by 50 pixels.

Property Value

This property is a boolean value. When Set to TRUE$ changing the control's parent

width also applies the same change to the control. When set to FALSE$ the control's

width is not changed when the parent width is changed.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

If this property is set to TRUE$ the RIGHTANCHOR property is automatically set to

FALSE$.

The AUTOSIZEWIDTH property is preserved and updated as necessary if the object is

moved or resized.

Example

 // Set the AUTOSIZEWIDTH of the EDB_NOTES EditBox control to autosize it's
 // Width

 Call Set_Property_Only(@Window : ".EDB_NOTES", "AUTOSIZEWIDTH", TRUE$)

See also

Common GUI AUTOSIZEHEIGHT property, Common GUI BOTTOMANCHOR property,

Common GUI CLIENTSIZE property, Common GUI CLIENTWIDTH property, Common

GUI RECT property, Common GUI RIGHTANCHOR property, Common GUI

SCREENRECT property, Common GUI SCREENSIZE property, Common GUI SIZE

property, Common GUI WIDTH property, Common GUI MOVE method, Common GUI

OFFSET method, WINDOW SIZE event.

BACKCOLOR property

Description

Specifies the RGB color value used for an object's background. This can be a single

"solid" color, or a pair of colors that are used to paint a gradient effect instead.

An RBG color is an integer value that is constructed from a combination of Red,

Green and Blue color intensities using the following formula:

 RGB = (Red) + (Green * 256) + (Blue * 65536)

Each of the color intensities should be a value between 0 and 255.

In addition to this there are also a set of "special" values that are not valid RBG

colors, but represent default system colors that can be used:

 -1 : Transparent
 -2 : Use default color for the object
 :
2147483648 : Use a Windows system colors
 to : (See the COLORS Insert record
2483027968 : for more details)

Property Value

This property can be a single RGB value for a solid background color, or an @Fm-

delimited array to specify a gradient background effect like so:

 <1> Color From (RBG value)
 <2> Color To (RBG value)
 <3> Gradient direction (Horizontal or Vertical)

If only "Color From" is specified the BACKCOLOR property is assumed to be a solid

color background.

The Gradient direction value can be one of the following:

 0 (or null) – No gradient
 1 – Vertical Gradient
 2 – Horizontal Gradient

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Most, but not all, objects support gradient backgrounds. Individual object

documentation will point out any that differ from this.

Be aware that the use of gradient background does involve a little extra overhead

when drawing controls because of the calculations needed to blend the colors –

while the PS attempts to mitigate this using cached bitmaps and double-buffering

there will always be some impact.

Equated constants for use with the BACKCOLOR property can be found in the

PS_EQUATES insert record. Common RGB color values can be found in the COLORS

insert record.

Example

 $Insert PS_Equates
 $Insert Colors

 // Set the BACKCOLOR of the form to Red

 prevColor = Set_Property(@Window, "BACKCOLOR", RED$)

 // Set the BACKCOLOR of the form to a vertical gradient

 bkColor = ""
 bkColor<PS_BKCOLOR_FROM$> = ORANGE$
 bkColor<PS_BKCOLOR_TO$> = RED$
 bkColor<PS_BKCOLOR_GRADSTYLE$> = PS_GRADSTYLE_VERT$

 Call Set_Property_Only(@Window, "BACKCOLOR", bkColor)

 // Set the BACKCOLOR property of the LBL_NAME control to Transparent

 Call Set_Property_Only(@Window : ".LBL_NAME", "BACKCOLOR", CLR_TRANSPARENT$)

 // Set the BACKCOLOR property of the EDL_SURNAME control to the default
 // color

 Call Set_Property_Only(@Window : ".LBL_NAME", "BACKCOLOR", CLR_USEDEFAULT$)

See also

Common GUI FORECOLOR property, SYSTEM CHOOSECOLOR method, RBG stored

procedure.

BOTTOM property

Description

Specifies the bottom coordinate of an object relative to its parent object.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

Setting this property adjusts the height of the object, it does not affect the TOP

property.

Coordinates are always relative to the top left corner of the screen, or, for a child

window, the upper left corner of the parent window's client area.

Example

 // Set the BOTTOM of the EDB_NOTES EditBox control to position 240

 Call Set_Property_Only(@Window : ".EDB_NOTES", "BOTTOM", 240)

See also

Common GUI AUTOSIZEHEIGHT property, Common GUI BOTTOMANCHOR property,

Common GUI CLIENTHEIGHT property, Common GUI CLIENTSIZE property, Common

GUI HEIGHT property, Common GUI RECT property, Common GUI SCREENRECT

property, Common GUI SCREENSIZE property, Common GUI SIZE property, WINDOW

SCALEUNITS property, WINDOW SIZE event, Appendix K – High-DPI Programming.

BOTTOMANCHOR property

Description

Specifies if the bottom coordinate of a control maintains the same distance from the

bottom of its parent object (Form or Panel) when the latter is resized.

For example, if the parent Form's height is increased by 40 pixels, a control with

BOTTOMANCHOR set to TRUE$ will be moved down by 40 pixels as well.

Property Value

This property is a boolean value. When Set to TRUE$ changing the control's parent

height will move the control up or down by the same amount. When set to FALSE$

the control's position is not changed when the parent height is changed.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

If this property is set to TRUE$ the AUTOSIZEHEIGHT property is automatically set to

FALSE$.

The BOTTOMANCHOR property is preserved and updated as necessary if the object

is moved or resized.

In previous versions of OpenInsight this property was named ANCHORBOTTOM – this

name is still supported for backwards compatibility.

Example

 // Set the BOTTOMANCHOR of the EDB_NOTES EditBox control

 Call Set_Property_Only(@Window : ".EDB_NOTES", "BOTTOMANCHOR", TRUE$)

See also

Common GUI AUTOSIZEHEIGHT property, Common GUI BOTTOM property, Common

GUI CLIENTHEIGHT property, Common GUI CLIENTSIZE property, Common GUI HEIGHT

property, Common GUI RECT property, Common GUI SCREENRECT property,

Common GUI SCREENSIZE property, Common GUI SIZE property, Common GUI MOVE

method, Common GUI OFFSET method, WINDOW SIZE event.

CANGETFOCUS property

Description

Indicates if an object can receive the input focus.

Property Value

This property is a boolean value. If TRUE$ then the object can receive the input

focus.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

To be able to receive the input focus an object must pass each of the following

tests:

• The object is a valid GUI object

• The ALLOWFOCUS property is TRUE$

• The object is enabled

• The object is visible

Example

 // Check to see if the current control is allowed to get the focus

 CanIHazFocus = Get_Property(CtrlEntID, "CANGETFOCUS")

See also

Common GUI ALLOWFOCUS property, Common GUI ENABLED property, Common

GUI FOCUS property, Common GUI HANDLE property, Common GUI VISIBLE property,

SYSTEM FOCUS property, Common GUI GOTFOCUS event, Common GUI LOSTFOCUS

event.

CLASSNAME property

Description

Returns the "window class name" of the object as registered with Windows. A

window class is a set of attributes that the Windows uses as a template to create a

GUI object such as a form or control. Every GUI object is a member of a window

class.

Property Value

This property is a string value.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The CLASSNAME property is basically a wrapper around the GetClassName Windows

API function, so more information on window classes can be found on the Microsoft

website.

Example

 // Get window class name of the current form

 ClassName = Get_Property(@Window, "CLASSNAME")

See also

N/a.

CHILDOBJECT property

Description

Returns TRUE$ if the control is a "child" object, i.e. it has the WS_CHILD style bit set.

Property Value

This property is a boolean value. If object is a child window this property returns

TRUE$, otherwise it returns FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

Only top-level forms (i.e. WINDOW objects that have the desktop as a “parent”)

return FALSE$ for the property. All other objects will return TRUE$.

For more information on the WS_CHILD style please refer to the Window Styles

documentation on the Microsoft website.

Example

 // Check if the current control is a child.

 IsChild = Get_Property(CtrlEntID, "CHILDWINDOW")

See also

Common GUI PARENT property, Common GUI PARENTFORM property, Common

STYLE property, Common GUI SETPARENT method.

CLIENTHEIGHT property

Description

Specifies the height of an object's client area.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

See remarks Get/Set No Yes No

Remarks

The client area is the part of an object which displays the content, such as text,

data, and images etc.

The title bar, menu bar, window menu, minimize and maximize buttons, sizing border,

edge and scroll bars are referred to collectively as the window's nonclient area. The

system manages most aspects of the nonclient area, while the application manages

the appearance and behavior of its client area. The CLIENTHEIGHT property

excludes the height components of the nonclient area.

Note that this property is only supported at design time for WINDOW objects.

Example

 // Set the CLIENTHEIGHT of the EDB_NOTES EditBox control to 200 DIPs high

 Call Set_Property_Only(@Window : ".EDB_NOTES", "CLIENTHEIGHT", 200)

See also

Common GUI AUTOSIZEHEIGHT property, Common GUI BOTTOMANCHOR property,

Common GUI CLIENTSIZE property, Common GUI HEIGHT property, Common GUI

RECT property, Common GUI SCREENRECT property, Common GUI SCREENSIZE

property, Common GUI SIZE property, WINDOW SCALEUNITS property, WINDOW SIZE

event, Appendix K – High-DPI Programming.

CLIENTSIZE property

Description

Specifies the width and height of an object's client area.

Property Value

This property is an @FM-delimited array that contains two integer values representing

the client area width and height respectively:

 <1> Client Area Width
 <2> Client Area Height

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No Yes No

Remarks

The client area is the part of an object which displays the content, such as text,

data, and images etc.

The title bar, menu bar, window menu, minimize and maximize buttons, sizing border,

and scroll bars are referred to collectively as the window's nonclient area. The

system manages most aspects of the nonclient area, while the application manages

the appearance and behavior of its client area. The CLIENTWIDTH property excludes

the width components of the nonclient area.

Example

 // Get the CLIENTSIZE of the EDB_NOTES EditBox control

 ClientSize = Get_Property(@Window : ".EDB_NOTES", "CLIENTSIZE")

 ClientWidth = ClientSize<1>
 ClientHeight = ClientSize<2>

See also

Common GUI AUTOSIZEWIDTH property, Common GUI CLIENTSIZE property, Common

GUI RECT property, Common GUI RIGHTANCHOR property, Common GUI

SCREENRECT property, Common GUI SCREENSIZE property, Common GUI SIZE

property, Common GUI WIDTH property, WINDOW SCALEUNITS property, WINDOW

SIZE event, Appendix K – High-DPI Programming.

CLIENTWIDTH property

Description

Specifies the width of an object's client area.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

See remarks Get/Set No Yes No

Remarks

The client area is the part of an object which displays the content, such as text,

data, and images etc.

The title bar, menu bar, window menu, minimize and maximize buttons, sizing border,

and scroll bars are referred to collectively as the window's nonclient area. The

system manages most aspects of the nonclient area, while the application manages

the appearance and behavior of its client area. The CLIENTWIDTH property excludes

the width components of the nonclient area.

Note that this property is only supported at design time for WINDOW objects.

Example

 // Set the CLIENTWIDTH of the EDB_NOTES EditBox control to 480 DIPs wide

 Call Set_Property_Only(@Window : ".EDB_NOTES", "CLIENTWIDTH", 480)

See also

Common GUI AUTOSIZEWIDTH property, Common GUI CLIENTSIZE property, Common

GUI RECT property, Common GUI RIGHTANCHOR property, Common GUI

SCREENRECT property, Common GUI SCREENSIZE property, Common GUI SIZE

property, Common GUI WIDTH property, Common GUI WINDOW SCALEUNITS

property, WINDOW SIZE event, Appendix K – High-DPI Programming.

CLIPCHILDREN property

Description

Specifies if the object excludes child objects from its update region before painting

itself.

Property Value

This property is a boolean value. If the object clips children from its update region

this property returns TRUE$, otherwise it returns FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

By default this property is set to TRUE$ because it prevents a parent object from

painting over it's children which usually results in "flickering" during the redraw cycle.

Note that this is different to previous versions of OpenInsight where this property was

not available so objects did not have WS_CLIPCHILDREN style set.

For more information on this property please refer to the Windows documentation

regarding the WS_CLIPCHILDREN window style on the Microsoft Website.

Example

 // Ensure the current window has the WS_CLIPCHILDREN style set
 // to prevent flickering.

 Call Set_Property_Only(@Window, "CLIPCHILDREN", TRUE$)

See also

Common GUI COMPOSITED property, Common GUI REDRAW property, Common

GUI INVALIDATE method, Common GUI REPAINT method.

CLIPSIBLINGS property

Description

Specifies if the object excludes sibling objects from its update region before painting

itself.

Property Value

This property is a boolean value. If the object clips siblings from its update region this

property returns TRUE$, otherwise it returns FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

By default, this property is set to TRUE$ because it prevents an object from painting

over its siblings during the redraw cycle.

For more information on this property please refer to the Windows documentation

regarding the WS_CLIPSIBLINGS window style on the Microsoft Website.

Example

 // Ensure the current window has the WS_CLIPSIBLINGS style set.

 Call Set_Property_Only(@Window, "CLIPSIBLINGS", TRUE$)

See also

Common GUI REDRAW property, Common GUI INVALIDATE method, Common GUI

REPAINT method.

COLUMN property

Description

If the object is data-bound then this property specifies the database column that it is

bound to.

Property Value

This property is a string value and must be a valid database column name.

For controls that support associated multivalued data, like the EditTable control, this

property will return an @Svm-delimited list of bound data columns at runtime.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get No No Yes

Remarks

N/a.

Example

 // Get the database column name of the EDL_SURNAME control

 ColName = Get_Property(@Window : ".EDL_SURNAME", "COLUMN")

See also

Common GUI PART property, Common GUI POS property, Common GUI MV

property, Common GUI TABLE property, WINDOW ATRECORD property, WINDOW ID

property, WINDOW RECORD property, Common GUI CALCULATE event.

COMPOSITED property

Description

Specifies if the object uses system double-buffering for painting.

Property Value

This property is a boolean value. If the object uses system double-buffering this

property returns TRUE$, otherwise it returns FALSE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

This property is a thin wrapper over the WS_EX_COMPOSITED extended window style.

When set it enables double-buffering on the object, which means that it renders into

an off-screen buffer, and only when rendering is complete is the result copied to the

screen. This avoids flicker because only a completely drawn object is put on the

screen; it is never seen in a partially-drawn state.

By default this property is FALSE$, because many OpenInsight objects implement

their own internal double buffering which can interfere with the COMPOSITED

property, and it can also conflict with the Windows Desktop Window Manager

(DWM) system.

For more information on this property please refer to the Windows documentation

regarding the WS_EX_COMPOSITED extended window style on the Microsoft

Website.

Example

 // Ensure the current window has the WS_EX_COMPOSITED style removed

 Call Set_Property_Only(@Window, "COMPOSITED", FALSE$)

See also

Common GUI CLIPCHILDREN property, Common GUI DOUBLEBUFFER property,

Common GUI REDRAW property, Common GUI STYLEEX property, Common GUI

STYLEEXN property, Common GUI INVALIDATE method, Common GUI REPAINT

method.

CONTEXTMENU property

Description

Specifies the CONTEXTMENU repository entity to use when a user right-clicks on an

object.

Property Value

This property is a string value and must be a valid, fully-qualified CONTEXTMENU

entity name.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

When setting this property at runtime the menu will not actually be instantiated until

the first attempt to use it.

Example

 // Set the name of the context menu for the IMG_PHOTO image control.

 MenuName = @AppID<1> : "*CONTEXTMENU**PHOTO_MENU"

 PrevName = Set_Property(@Window : ".IMG_PHOTO", "CONTEXTMENU", MenuName)

See also

Common GUI ATTACHMENU method, Common GUI SHOWMENU method, Common

GUI TRACKPOPUPMENU method, Common GUI INITCONTEXTMENU event, Common

GUI CONTEXTMENU event, Common GUI MENU event, ContextMenu stored

procedure.

CONV property

Description

Specifies the Output Conversion pattern for a control. This pattern is used to convert

internally formatted data before displaying it in the control.

For example, dates in OpenInsight are held internally as simple integer values – an

output conversion needs to be applied to this data so that it becomes a meaningful

date string for a user.

Property Value

This property is a string value and must be one of the following:

• A valid OpenInsight output conversion format such as "D4/E" etc.

• A null string (no output conversion applied).

At design time the following special strings may also be used:

• "<<None>>" – same as a null string, i.e. no conversion applied.

• "<<Default>>" – If the control is data-bound then the database column's

output conversion is used, otherwise this is treated as a null string.

For controls that support associated multivalued data, like the EditTable control, this

property will return an @Svm-delimited list of output conversion strings at runtime

(one for each column in the control).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

N/a.

Example

 // Set the output conversion for the EDL_DOB control to a four-year European format:
 //
 // "D4/E" (dd/mm/yyyy)
 //
 // (you know, the date format that makes sense ;).

 PrevConv = Set_Property(@Window : ".EDL_DOB", "CONV", "D4/E")

See also

Common GUI INVALUE property, Common GUI VALID property.

CURSOR property

Description

Specifies the cursor to use when over a control.

Property Value

This property can be one of the following formats:

• A path and file name of a cursor (.CUR) file.

• A path and file name to a resource file (such as a DLL) containing the cursor

image, along with its resource ID. The resource ID is separated from the file

name by a “#” character.

E.g.

.\res\MyAppRes.Dll#192

.\res\MyAppRes.Dll#MYCURSOR

Note that if the cursor image is stored in a custom resource section (rather

than the usual CURSOR section) the custom section name may be specified

by inserting it before the resource name like so:

.\res\MyAppRes.Dll#SOMESECTION#192
.\res\MyAppRes.Dll#SOMESECTION#MYCURSOR

• A symbol that specifies one of the standard Windows cursors. These are:

Symbol Description

A Arrow

H Wait

I I-Beam (for text entry)

C Cross

V Vertical (Up) Arrow

& Hand

S App Starting

? Help

N No

+ Size All

\ Size NWSE

/ Size NESW

- Size WE

| Size NS

D DragMove

DC DragCopy

"" Set to null to use the control's default value.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property is used in response to the windows WM_SETCURSOR message to set the

cursor shape when the cursor is over the control.

Note that Windows doesn't always send a WM_SETCURSOR message unless the

mouse is moved, so it's possible that you may set the CURSOR property and not see

a change. If you need to force a change straight after setting the property use the

SYSTEM SETCURSOR method to do so.

Example

 // Example - Set the cursor for the current window to an
 // hourglass while it performs a task and then reset it
 // afterwards

 PrevCursor = Set_Property(@Window, "CURSOR", "H")

 // Because the system doesn't send a WM_SETCURSOR message
 // unless the mouse is moved, it can look like the cursor
 // is stuck, so we'll back up that property change with the
 // SYSTEM CURSOR message too, because that change is
 // immediate.

 Call Exec_Method("SYSTEM", "SETCURSOR", "H")

 GoSub ProcessAllTheThings

 // Reset the cursor and force the change...
 Call Set_Property(@Window, "CURSOR", PrevCursor)
 Call Exec_Method("SYSTEM", "SETCURSOR", PrevCursor)

See also

SYSTEM CURSOR property, SYSTEM SETCURSOR method.

CUSTOMPROPERTIES property

Description

Specifies a list of user-defined property names and values to apply to the object at

runtime.

Property Value

This property is a list of custom property names and associated values that are

turned into User Defined Properties (UDPs) at runtime.

Unlike creating a UDP with Set_Property there no need to prefix a property name

with an "@" character.

A dynamic array value may be specified for a property by using the standard OI "[]"

delimiter notation that is used by the System Monitor.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set N/a No No No

Remarks

This is a design-time only property that allows the Form Designer to define one or

more UDPs for the object that are created and applied when it is instantiated.

Example

Using the example above would create two user-defined properties:

• "@SOME_PROP" with a string value of "Yadda"

• "@SOMEARRAY_PROP" with a dynamic array value of:

<1> Field1
<2> Field2

See also

Common '@' (User-defined) property, Common UDPLIST property, Executing System

Monitor Commands (for array notation),

DEFPROP property

Description

Specifies the value of the "default property" for a control. Controls that support

DEFPROP have a property that they consider to be the "default", i.e. the one that

represents their data contents the best – for example, an EditLine's DEFPROP is the

TEXT property, while an EditTable's DEFPROP is the ARRAY property.

If the control is data-bound then setting the DEFPROP property will update the

parent form's RECORD and SAVEWARN properties too.

Property Value

This property is usually a string or a dynamic array value depending on the

designated default property for the control.

Control Type Default Property Name

Animate CLIPNAME

Bitmap BITMAP

CheckBox CHECKED

ColorDropDown COLOR

ComboBox TEXT

DateTime VALUE

EditLine TEXT

EditBox TEXTVAL

EditTable ARRAY

FileExplorer PATH

FilePreview FILENAME

GroupBox TEXT

GroupBoxEx TEXT

HScrollBar HPOSITION

Hyperlink LINK

ListBox TEXT

Panel TEXT

ProgressBar VALUE

PropertyGrid VALUE

PushButton TEXT

RadioButton VALUE

RichEditBox RTFTEXT

Static TEXT

TabControl VALUE

TreeListBox TEXT

UpDown VALUE

VScrollBar VPOSITION

Window TEXT

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

When using DEFPROP to update a data-bound control with a conversion format

specified in it's CONV property, the new value is passed to the Iconv function first –

this is to ensure that it is translated into appropriate internal format before being

stored in the parent form's RECORD property. If the Iconv conversion fails it does so

silently, and a null value will be stored – it is assumed that the developer is

responsible for ensuring any data used in programmatic updates is correct!

This property is mainly implemented for the OpenInsight data-binding process, to

allow generic code to interact with data-bound controls.

Example

 // Set the DEFPROP (TEXT) of the EDL_SURNAME control:

 PrevVal = Set_Property(@Window : ".EDL_SURNAME", "DEFPROP", PatientSurname)

See also

Common GUI CONV property, Common GUI DEFPROPID property, Common GUI

DEFPROPPOS property, Common GUI DEFPROPPOSID property, Common GUI

DEFPROPRAW property, WINDOW RECORD property, WINDOW SAVEWARN property.

DEFPROPID property

Description

Returns the name of a control's DEFPROP ("default property") property. Controls that

support DEFPROP have a property that they consider to be the "default", i.e. one

that represents their data contents – for example, an EditLine's DEFPROP is the TEXT

property, while an EditTable's DEFPROP is the ARRAY property.

Property Value

This property contains the name of the property used for the default property value.

See the DEFPROP property for a list of control types and their default property

names.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Get the name of the default property for the EDL_SURNAME control:

 DefPropID = Get_Property(@Window : ".EDL_SURNAME", "DEFPROPID")

See also

Common GUI DEFPROP property, Common GUI DEFPROPRAW property.

DEFPROPPOS property

Description

Specifies the value of the "default position property" for a control. Controls that

support DEFPROPPOS have a property that they consider to be the best one to

represent the position for user interaction – for example, an EditTable's DEFPROPPOS

is the CARETPOS property.

Property Value

This property is usually an integer or a dynamic array value depending on the

designated default position property for the control.

Control Type Default Position Property Name

EditTable CARETPOS

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

This property is mainly implemented for the OpenInsight data-binding process, to

allow generic code to interact with data-bound controls.

Example

 // Set the DEFPROPPOS (CARETPOS) of the EDT_INVOICES control:

 PrevPos = Set_Property(@Window : ".EDT_INVOICES", "DEFPROPPOS", 1 : @Fm : rowNo)

See also

Common GUI DEFPROP property, Common GUI DEFPROPPOSID property.

DEFPOSPROPID property

Description

Returns the name of a control's DEFPROPPOS ("default position") property.

Property Value

This property contains the name of the property used to access the default position

property value. See the DEFPROPPOS property for a list of control types and their

default position property names.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Get the name of the default position property for the EDT_INVOICES
 // EditTable control:

 DefPropPosID = Get_Property(@Window : ".EDT_INVOICES", "DEFPROPPOSID")

See also

Common GUI DEFPROPPOS property.

DEFPROPRAW property

Description

Emulates a control's DEFPROP property without updating the parent form's RECORD

and SAVEWARN properties if the control is data-bound.

Property Value

This property is usually a string or a dynamic array value depending on the

designated default property for the control. See the DEFPROP property for more

details.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

This property is mainly implemented for the OpenInsight data-binding process, to

allow generic code to interact with data-bound controls.

Example

 // Set the DEFPROPRAW (TEXT) of the EDL_SURNAME control:

 PrevVal = Set_Property(@Window : ".EDL_SURNAME", "DEFPROPRAW", PatientSurname)

See also

Common GUI DEFPROP property, Common GUI DEFPROPID property, WINDOW

RECORD property, WINDOW SAVEWARN property.

DEFVALUE property

Description

Specifies the default content to insert into a control when it is empty and receives

the input focus.

Property Value

This property is a string value and may be one of the following special tokens:

Token Description

COUNTER Inserts the current value of a sequential counter and increments it

by one ready for the next time it is used.

This value may only be used for a data-bound control and is stored

in the associated dictionary with a default key of:

 "%S%*" <columnName>

However, a key may be specified with the COUNTER token as a

suffix like so:

 "COUNTER:" <keyNameToUse>

E.g.
 COUNTER:WIDGET_COUNT

DATE Inserts the current date.

DATETIME Inserts the current date and time.

PREVVAL Inserts the previously saved value for a data-bound control.

SEQKEY Inserts the next sequential key count for a data-bound form. The

sequential key count itself is stored in the dictionary of the bound

table with a key of "%SK%". A different key may be used by

appending it to the "SEQKEY" token with a ":" delimiter.

E.g. Using "SEQKEY:%MYCTR$" uses the "%MYCTR$" record to store the

sequential key counter instead of the default "%SK%".

TIME Inserts the current time.

TIMEDATE Inserts the current date and time using the TimeDate() function.

USER Inserts the current username.

"Literal" A literal string value enclosed in quotes.

E.g.
 "Waiting"
 "TEL001"

{CALCULATED} The name of a symbolic (calculated) column enclosed in braces.

E.g.
 {CUSTOMER_FULL_NAME}
 {DELIVERY_FULL_ADDRESS}

At design time the following special tokens may also be used:

• "<<None>>" – same as a null string, i.e. no default value is inserted.

• "<<Default>>" – If the control is data-bound then the database column's

default value is used, otherwise this is treated as a null string as above.

If none of the above tokens are specified the DEFVALUE value is assumed to be the

name of a stored procedure and its parameters:

 <procName> "(" <param1>"," <param2> "," <param2> "," … etc ")"

E.g.

 AMSYS_PATREC("GETDEF", "@FOCUS", "KCODE")
 @COMMUTER("@SELF", "GETDEFVAL")

Note that the same rules for specifying QuickEvent parameters apply:

The following special "@" placeholder tokens may be used:

• @COMMUTER

• @EVENT

• @FOCUS

• @MDIACTIVE

• @MDIFRAME

• @NEXT

• @PARAM1 (PrevFocusID from the calling GOTFOCUS event)

• @PREV

• @SELF

• @WINDOW

The standard "[]" notation maybe used for specifying dynamic arrays as

parameters.

For controls that support associated multivalued data, like the EditTable control, this

property will return an @Svm-delimited list of default value strings at runtime (one for

each column in the control).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

This property is used by the system GOTFOCUS event handler.

The form designer uses a list of options to define this property at design time. The list

itself is stored in the SYSENV table in the CFG_RTI_IDE_DEFVALUE record.

Example

 // Set the DEFVALUE property of the EDL_NAME control to call the
 // form's commuter module property passing the name of the control
 // and a method called GET_DEF_NAME_VAL

 Call Set_Property_Only(@Window : ".EDL_NAME", "DEFVALUE", |
 "@COMMUTER('@FOCUS', 'GET_DEF_NAME_VAL')")

 // Set the DEFVALUE property of the EDL_ADDRESS EditLine to use the
 // result of the FULL_ADDRESS_ONE_LINE symbolic column

 Call Set_Property_Only(@Window : ".EDL_ADDRESS", "DEFVALUE", |
 "{FULL_ADDRESS_ONE_LINE}")

 // Set the DEFVALUE property of the EDL_Notes EditLine to use the
 // string "No Notes"

 Call Set_Property_Only(@Window : ".EDL_ADDRESS", "DEFVALUE", |
 '"No Notes"')

See also

Common GUI CONV property, Common GUI DEFPROP property, Common GUI

INVALUE property, WINDOW ALLOWSEQKEYRESET property, Common GUI GOTFOCUS

event,

DESIGNMODE property

Description

Indicates if the control is in "design mode", i.e. it is currently hosted in the Form

Designer.

Property Value

This property is boolean value. It returns TRUE$ if the control is in "design mode", or

FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

N/a.

Example

 // Check if the current control is in DesignMode

 IsDesignMode = Get_Property(ctrlEntID, "DESIGNMODE")

See also

Common GUI DESIGNSELECTED property.

DESIGNSELECTED property

Description

Indicates if the control is currently selected in the Form Designer.

Property Value

This property is boolean value. It returns TRUE$ if the control is selected, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

N/a.

Example

 // Check if the current control is selected in the Form Designer

 IsDesignSel = Get_Property(ctrlEntID, "DESIGNSELECTED")

See also

Common GUI DESIGNMODE property.

DOUBLEBUFFER property

Description

Indicates if an object is using double-buffering for drawing operations.

Property Value

This property is boolean value. It returns TRUE$ if the object is using double-buffering,

or FALSE$ otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

Not all objects support this property – for those that do the default value will be

TRUE$.

This property is not the same as the system double-buffering mentioned in the

COMPOSITED property.

Using this property to turn off double-buffering is intended to be a trouble-shooting

tool rather than a normal option.

Example

 // Check if the current control is double-buffering for painting.

 IsDoubleBuffered = Get_Property(ctrlEntID, "DOUBLEBUFFER")

See also

Common GUI COMPOSITED property, Common GUI REDRAW property, Common

GUI INVALIDATE method, Common GUI REPAINT method.

DPI property

Description

Returns the current DPI (dots-per-inch) settings for the object.

Property Value

This property is an @Fm-delimited array containing the DPI values:

<1> X (horizontal) DPI
<2> Y (vertical) DPI

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The DPI property from a control is always the same as its top-level parent form.

Beginning with Windows 8.1 individual monitors can have their own DPI settings. This

property returns the DPI for the monitor that the top-level parent form is currently

displayed on, or that the majority of the form is displayed on if using more than one

monitor. Prior to this the form DPI is always the same as the SYSTEM DPI property.

The form DPI is combined with its SCALEFACTOR property when calculating scaling

attributes.

Example

 // Get the DPI settings for the current control

 CtrlDPI = Get_Property(ctrlEntID, "DPI")

See also

SYSTEM DPI property, WINDOW DPI property, WINDOW SCALEFACTOR property,

WINDOW SCALED event, Appendix K – High-DPI Programming.

ECHO property

Description

Specifies if the control displays keystrokes entered by the user.

Property Value

This property is a boolean value. When set to FALSE$ a CHAR event is still raised but

entered characters are not displayed. The default is TRUE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

N/a.

Example

 // Turn off the "keyboard echo" for the EDL_NAME EditLine control.

 PrevVal = Set_Property(@Window : ".EDL_NAME", "ECHO", FALSE$)

See also

Common GUI VALIDCHARS property, Common GUI CHAR event.

EDGESTYLE property

Description

Specifies the appearance of a control's non-client area border. For most controls

Windows provides a border that it maintains and paints to match the currently

selected visual style.

Property Value

This property is an integer value that specifies if the style of the border. It may be

one of the following values:

Value Description

0 None – the control is drawn without an edge.

1 Single - the control is drawn with a simple single pixel border.

2 Sunken – the control is draw with a "sunken" edge style. Note

that the term "sunken" is a throwback to the old "Classic

Windows" theme – in modern themes this style is usually

rendered as single pixel edge with another single pixel inner

border.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The Single and Sunken edge values map into the Windows WS_EX_STATICEDGE and

WS_EX_CLIENTEDGE extended window styles respectively. For more information on

these styles please refer to the Windows documentation on the Microsoft website.

Equated constants for use with the EDGESTYLE property can be found in the

PS_EQUATES insert record.

Example

 // Set the current control's EDGESTYLE to "sunken"
 $Insert PS_Equates

 Call Set_Property_Only(CtrlEntID, "EDGESTYLE", PS_EGS_SUNKEN$)

See also

Common GUI STYLEEX property, Common GUI STYLEEXN property.

ENABLED property

Description

Enables or disables mouse and keyboard input to a control. When input is disabled,

the window does not receive input such as mouse clicks or key presses.

Property Value

The ENABLED property is an integer value that specifies if the control is enabled. For

a standard control it can be one of the following values:

Value Description

0 The control is disabled.

1 The control is enabled.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Most controls treat this property as a boolean value, but there are exceptions to this

such as the EDITFIELD control. Any such exceptions are noted in the individual

control descriptions.

Example

 $Insert Logical

 // Example - Disabling a control
 Call Set_Property_Only(CtrlEntID, "ENABLED", FALSE$)

See also

N/a.

FOCUS property

Description

Indicates if a control has the system input focus, or sets the input focus to a control.

Property Value

This property is a boolean value. TRUE$ if the control has the input focus, or FALSE$

otherwise.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

When setting the input focus via this property the PS will remove all events from the

event queue both before and after setting the actual focus. This was designed to

allow the system to reset the focus back to a problem control when a validation

error was encountered (validation usually occurs on a LOSTFOCUS event), but

without triggering any more conflicting validation checks. Because events are

removed wholesale during this process it is not considered the best way to move the

input focus in your applications – the best method is to use the SYSTEM FOCUS

property along with the SYSTEM BLOCKEVENTS property if needed.

Setting the focus to a control on an MDI Child window will cause the MDI child to be

activated first if necessary.

Example

 // Check if the current control has the input focus

 bFocused = Get_Property(CtrlEntID, "FOCUS")

 // Move the focus to the EDL_SURNAME control without triggering
 // any focus-based events:
 //
 // Don't do this:
 //
 // Call Set_Property_Only(@Window : ".EDL_SURNAME", "FOCUS", TRUE$)
 //
 // Do this instead:

 Call Set_Property_Only("SYSTEM", "BLOCKEVENTS", TRUE$)
 Call Set_Property_Only("SYSTEM", "FOCUS", @Window : ".EDL_SURNAME")
 Call Set_Property_Only("SYSTEM", "BLOCKEVENTS", FALSE$)

See also

SYSTEM FOCUS property, Common GUI GOTFOCUS event, Common GUI LOSTFOCUS

event, WINDOW ACTIVATED event.

FONT property

Description

Specifies the font used to display text in a control.

Property Value

This property is an @Svm-delimited array font values. For getting and setting a font

the first twelve sub-values are the same:

Position Name Description

<0,0,1> Facename Name of the font, e.g. "Arial" or "Courier New" etc.

<0,0,2> Height Height of the font's character cell in pixels (expressed as

a negative value).

<0,0,3> Weight The weight of the font from 0 to 1000 – normal is 400,

bold is 700 etc.

<0,0,4> Italic TRUE$ if the font is italic.

<0,0,5> Underline TRUE$ if the font is underlined.

<0,0,6> Width Average width of characters in the font.

<0,0,7> CharSet ID of the font character set.

<0,0,8> PitchAndFamily Pitch and Family values of the font.

<0,0,9> StrikeOut TRUE$ if the font is a strikeout font.

<0,0,10> OutPrecision Output precision of the font.

<0,0,11> ClipPrecision Clipping precision of the font.

<0,0,12> Quality Output quality of the font.

When getting the FONT property, the following extra sub-value members are

returned:

Position Name Description

<0,0,13> Ascent The ascent (units above the base line) of characters.

<0,0,14> Internal Leading The amount of leading (space) inside the bounds set

by the Height.

<0,0,15> External Leading The amount of extra leading (space) that the

application adds between rows.

<0,0,16> MaxCharWidth The width of the widest character in the font.

When setting the FONT property, the following extra sub-value members can be

applied (they are optional).

Position Name Description

<0,0,13> Red Red color intensity for the FORECOLOR.

<0,0,14> Green Green color intensity for the FORECOLOR.

<0,0,15> Blue Blue color intensity for the FORECOLOR.

• Sub-values 13-15 can be used to set the FORECOLOR property of the object

using the individual Red, Green and Blue color intensities to produce an RGB

color value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

This property sets the default font for a control. Certain controls may support other

styling options that can override the normal FONT property.

The sub-values in the FONT property map onto several members of the LOGFONT

and TEXTMETRIC Windows C-structures, so for more information on these attributes

please refer to the Windows documentation on the Microsoft website.

Equated constants for use with the FONT property can be found in the following

insert records:

• PS_FONT_EQUATES

• MSWIN_LOGFONT_EQUATES

Example

 $Insert MSWin_LogFont_Equates
 $Insert PS_Font_Equates

 // Get the FONT for the current control

 CtrlFont = Get_Property(CtrlEntID, "FONT")

 // And make sure it is bold and underlined

 CtrlFont<0,0,PS_FONT_POS_WEIGHT$> = FW_BOLD$
 CtrlFont<0,0,PS_FONT_POS_UNDERLINE$> = TRUE$

 Call Set_Property_Only(CtrlEntID, "FONT", CtrlFont)

See also

Common GUI FORECOLOR property, SYSTEM CHOOSEFONT method, RBG stored

procedure.

FORECOLOR property

Description

Specifies the RGB color value used draw text in a control.

An RBG color is an integer value that is constructed from a combination of Red,

Green and Blue color intensities using the following formula:

 RGB = (Red) + (Green * 256) + (Blue * 65536)

Each of the color intensities should be a value between 0 and 255.

In addition to this there are also a set of "special" values that are not valid RBG

colors, but represent default system colors that can be used:

 -1 : Transparent
 -2 : Use default color for the object
 :
2147483648 : Use a Windows system colors
 to : (See the COLORS Insert record
2483027968 : for more details)

Property Value

This property is a single RGB value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Common RGB color values can be found in the COLORS insert record.

Example

 $Insert PS_Equates
 $Insert Colors

 // Set the FORECOLOR of the LBL_NAME control to Blue

 prevColor = Set_Property(@Window : ".LBL_NAME", "FORECOLOR", BLUE$)

 // Set the BACKCOLOR property of the LBL_NAME control to "Use Default"

 Call Set_Property_Only(@Window : ".LBL_NAME", "FORECOLOR", CLR_USEDEFAULT$)

See also

Common GUI BACKCOLOR property, Common GUI FONT property, SYSTEM

CHOOSECOLOR method, RBG stored procedure.

GOTFOCUSVALUE property

Description

Returns the value for a control when it received the input focus.

Property Value

This property is usually a string or a dynamic array value depending on the type of

default property (DEFPROP) for the control.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

The DEFPROP property is used to obtain the value when the control receives focus

where it is cached for later comparison.

This property is mainly implemented for the OpenInsight validation process and is set

in the system GOTFOCUS event handler.

In previous versions of OpenInsight this property was named GOTFOCUS_VALUE – this

name is still supported for backwards compatibility.

Example

 // Get the GOTFOCUSVALUE (TEXT) of the EDL_SURNAME control:

 GFVal = Get_Property(@Window : ".EDL_SURNAME", "GOTFOCUSVALUE")

See also

Common GUI DEFPROP property, Common GUI DEFPROPID property, Common GUI

FOCUS property, SYSTEM FOCUS property, Common GUI GOTFOCUS event, Common

GUI LOSTFOCUS event.

HANDLE property

Description

Returns the internal Windows "handle" (unique ID), for an object. This is commonly

referred to in Windows documentation as the HWND.

Property Value

This property is an unsigned integer. If the object referred to is not valid then a null

value is returned.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

Because this property returns a null value if used with an invalid object ID it is often

used to test if that object exists (see example below).

Example

 // Get the Windows handle for current form

 hwnd = Get_Property(CtrlEntID, "HANDLE")

 // Check if the OpenInsight IDE (RTI_IDE) is running

 If bLen(Get_Property("RTI_IDE", "HANDLE")) Then
 // IDE is running...
 End

See also

N/a.

HEIGHT property

Description

Specifies the height of an object.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

The HEIGHT property includes an object's non-client area as well the client area.

Example

 // Set the HEIGHT of the EDB_NOTES EditBox control to position 200 DIPs

 Call Set_Property_Only(@Window : ".EDB_NOTES", "HEIGHT", 200)

See also

Common GUI AUTOSIZEHEIGHT property, Common GUI BOTTOMANCHOR property,

Common GUI CLIENTHEIGHT property, Common GUI CLIENTSIZE property, Common

GUI RECT property, Common GUI SCREENRECT property, Common GUI SCREENSIZE

property, Common GUI SIZE property, WINDOW SCALEUNITS property, WINDOW SIZE

event, Appendix K – High-DPI Programming.

IMAGE property

Description

Specifies the properties of an object's IMAGE sub-object at design-time.

Property Value

This property is a collection of IMAGE object properties and values that are

compiled into the form structure by the Form Designer and applied to an IMAGE

sub-object at runtime.

The following properties for an image can be set in the Form Designer using the

Image Property Editor dialog:

• Entity ID (this is a repository ID, not a file name/path)

• Alignment

• AutoScale flag

• Image index

• Image Offset

• Image Origin

• Image Style (Clip, Tile etc).

• Translucency

The following image properties cannot be edited here because they are intrinsic to

the chosen image entity itself (ColorKey and Image Count can be edited in the IDE's

Image Designer tool however).

• ColorKey

• Image Count

• FrameCount

• Size

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set N/a No No No

Remarks

This is a design-time only property that allows the Form Designer to define properties

for the IMAGE sub-object.

Most, but not all, objects support an IMAGE sub-object so please consult the

individual object type documentation for more details.

Example

At runtime the equivalent code, using the Image Object API, would be:

 // Example showing hwo to set properties of the current window's IMAGE
 // sub-object at runtime

 $Insert PS_Equates

 ImageObjID = @Window : ".IMAGE"

 ImageEntity = @AppID<1> : "*IMAGE*PNG*RTI_MIGRATE_V9_TO_10"

 Call Exec_Method(ImageObjID, "SETREPOSIMAGE", ImageEntity)
 Call Set_Property_Only(ImageObjID, "ALIGN", PS_IA_BOTTOMRIGHT$)
 Call Set_Property_Only(ImageObjID, "AUTOSCALE", TRUE$)
 Call Set_Property_Only(ImageObjID, "INDEX", 1)
 Call Set_Property_Only(ImageObjID, "OFFSET", 0 : @Fm : 0)
 Call Set_Property_Only(ImageObjID, "ORIGIN", 0 : @Fm : 0)
 Call Set_Property_Only(ImageObjID, "STYLE", PS_IS_CLIP$)
 Call Set_Property_Only(ImageObjID, "TRANSLUCENCY", 70)

See also

Common GUI BITMAP property, IMAGE Object API, IMAGELIST Object API

IMAGELIST property

Description

Specifies the properties of an object's IMAGELIST sub-object at design-time.

Property Value

This property is a collection of IMAGELIST object properties and values that are

compiled into the form structure by the Form Designer and applied to an IMAGELIST

sub-object at runtime.

The following properties for an imagelist can be set in the Form Designer using the

Image Property Editor dialog:

• Entity ID (this is a repository ID, not a file name/path)

• AutoScale flag

The following imagelist properties cannot be edited here because they are intrinsic

to the chosen entity itself (ColorKey and Image Count can be edited in the IDE's

Image Designer tool however).

• ColorKey

• Image Count

• Frame Count

• Size

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set N/a No No No

Remarks

This is a design-time only property that allows the Form Designer to define properties

for the IMAGELIST sub-object.

Some, but not all, objects support an IMAGELIST sub-object so please consult the

individual object type documentation for more details.

Example

At runtime the equivalent code, using the Image Object API, would be:

 // Example showing how to set properties of the LST_TASKS IMAGELIST
 // sub-object at runtime

 $Insert PS_Equates

 ImageListObjID = @Window : ".LST_TASKS.IMAGE"

 ImageEntity = @AppID<1> : "*IMAGELIST*PNG*RTI_IDE_TASKLIST"

 Call Exec_Method(ImageListObjID , "SETREPOSIMAGE", ImageEntity)
 Call Set_Property_Only(ImageObjID, "AUTOSCALE", TRUE$)

See also

IMAGE object API, IMAGELIST Object API

INVALUE property

Description

Specifies the value of the "default property" for a control, but in "internal format if a

conversion pattern (CONV property) is also defined.

This property is essentially the same as the DEFPROP property but allows the value to

be specified in internal format rather than the usual external format. For example, a

date string such as "31/01/2021" has an internal integer format of "19724", and

INVALUE allows you to use the latter representation when getting and setting the

value of a control (assuming a conversion pattern of "D4/E")

As with DEFPROP, if the control is data-bound then setting the INVALUE property will

update the parent form's RECORD and SAVEWARN properties too.

Property Value

This property is usually a string or a dynamic array value depending on the

designated default property for the control. See the DEFPROP property for more

details.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No Yes

Remarks

When getting the INVALUE property the DEFPROP process is used to get the data in

external format which is then passed to the Iconv() function to be converted into an

internal format.

When setting the INVALUE property the data is first passed to the Iconv() function for

conversion to an external format before being passed to the DEFPROP process to be

set in the control.

If the control does not have a conversion pattern defined in the CONV property

then no conversions take place and INVALUE behaves exactly like DEFPROP.

Example

 // Get the date from the EDL_EXPIRY control (assume the CONV property has a
 // pattern of "D4/E"), and increment it by 7 days

 IDate = Get_Property(@Window : ".EDL_EXPIRY", "INVALUE")

 // IDate is in internal integer format so it's easy to increment
 IDate += 7

 // Put the updated value back in the control - the user will see the
 // normal "dd/mm/yyyy" format
 Call Set_Property_Only(@Window : ".EDL_EXPIRY", "INVALUE", IDate)

See also

Common GUI CONV property, Common GUI DEFPROP property, Common GUI

DEFPROPID property, Common GUI DEFPROPRAW property, WINDOW RECORD

property, WINDOW SAVEWARN property.

LEFT property

Description

Specifies the left coordinate of an object relative to its parent object.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

Setting this property adjusts the left coordinate of the object, it does not affect the

width so the object is moved, not resized.

Coordinates are always relative to the top left corner of the screen, or, for a child

window, the upper left corner of the parent window's client area.

Example

 // Set the LEFT coordinate of the EDB_NOTES EditBox control to position 8

 Call Set_Property_Only(@Window : ".EDB_NOTES", "LEFT", 8)

See also

Common GUI AUTOSIZEWIDTH property, Common GUI CLIENTSIZE property, Common

GUI CLIENTWIDTH property, Common GUI RECT property, Common GUI

RIGHTANCHOR property, Common GUI SCREENRECT property, Common GUI

SCREENSIZE property, Common GUI SIZE property, Common GUI WIDTH property,

Common GUI MOVE method, Common GUI OFFSET method, WINDOW SCALEUNITS

property, WINDOW SIZE event, Appendix K – High-DPI Programming.

MONITOR property

Description

Returns the details for the monitor that is nearest to the specified object (i.e. has the

largest area of intersection with the coordinates of the specified object).

Property Value

This property is @Fm-delimited dynamic array of monitor information with the

following format:

 <1> Monitor Handle
 <2> Display Rectangle (@Vm-delimited)
 <2,1> Display Left
 <2,2> Display Top
 <2,3> Display Right
 <2,4> Display Bottom
 <3> Work-area Rectangle (@Vm-delimited)
 <3,1> Work-area Left
 <3,2> Work-area Top
 <3,3> Work-area Right
 <3,4> Work-area Bottom
 <4> Flags
 <5> Device name
 <6> DPI X value
 <7> DPI Y value

The Display Rectangle contains the coordinates of the entire monitor surface. The

Work-area rectangle contains the coordinates of the entire monitor surface minus

the TaskBar and any docked “AppBars”.

Note that the returned coordinates will be scaled with respect to the monitor DPI.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No Yes No

Remarks

If the object's coordinates intersect one or more display monitor rectangles, the

return value is the display monitor that has the largest area of intersection with the

object.

This property uses the MonitorFromWindowWindows API function internally, so please

refer to the documentation on the Microsoft website for further information.

Constants for use with this property can be found in the MSWin_Monitor_Equates and

PS_Monitor_Equates insert records.

Example

 // Get the details for the monitor that the current form
 // is displayed on

 MonitorInfo = Get_Property(@Window, "MONITOR")

See also

Common GUI DPI property, Common GUI SCREENRECT property, Common GUI

SCREENSIZE property, SYSTEM MONITORLIST property, SYSTEM SIZE property, Appendix

K – High-DPI Programming.

MOUSECAPTURED property

Description

Specifies if mouse messages are redirected to ("captured by") a specific object.

Property Value

This property is a boolean value. If TRUE$ then Windows will direct all mouse

messages to the specified object.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

Once the mouse is captured by an object all mouse messages are re-directed at

that object until the MOUSECAPTURED property is set to FALSE$, or something like

another application gaining the foreground status which will force a release. When

this happens a LOSTCAPTURE event is sent to the object to notify it of the change.

This property uses the SetCapture and ReleaseCapture Windows API functions

internally, so please refer to the documentation on the Microsoft website for further

information on mouse capturing.

Example

 // Example BUTTONDOWN event code - check if the user wants to "drag"
 // the current object, and if so capture the mouse messages so that
 // all subsequent MOUSEMOVE events will be directed to it.

 If Exec_Method(CtrlEntID, "DRAGDETECT", MouseButton, xDown, yDown) Then
 // User wants to drag, so capture the mouse...
 Call Set_Property_Only(CtrlEntID, "MOUSECAPTURED", TRUE$)
 End

See also

Common GUI CURSOR property, Common GUI DRAGDETECT method, Common GUI

BUTTONDOWN event, Common GUI BUTTONUP event, Common GUI LOSTCAPTURE

event, Common GUI MOUSEMOVE event.

NEXT property

Description

Specifies the next control in the tab order from the specified control.

Property Value

This property is a string value that should contain a valid, fully qualified, control

name.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property can be used to dynamically change the tab order of control on a form

at runtime.

Example

 // Skip over the next control in the tab order to the
 // one after it

 NextCtrl = Get_Property(CtrlEntid, "NEXT")
 TheCtrlAfterNext = Get_Property(NextCtrl, "NEXT")

 Call Set_Property_Only(CtrlEntId, "NEXT", TheCtrlAfterNext)

 // Now update that control so "tabbing back" from it goes to
 // this control

 Call Set_Property_Only(TheCtrlAfterNext, "PREVIOUS", CtrlEntID)

See also

Common GUI PREVIOUS property.

ORIGARRAY property

Description

Returns the original "List" attribute from the structure used to create the object at

runtime, but in EditTable-style "Array" format.

Property Value

This property is an @Svm/@Tm-delimited dynamic array containing the data written

to the object's List attribute when it was saved in the Form Designer, but returned in

"Array" format – i.e. @Svm-delimited Columns, with @Tm-delimited Rows.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_LIST$ value from the ORIGSTRUCT property, but with

the delimiters transposed by using the SYSTEM LIST2ARRAY method.

Note that not all object types use or support an Array attribute. Please consult the

documentation for the specific control types for more details.

Example

 // Get the Array used when the current control was created

 OrigArray = Get_Property(CtrlEntID, "ORIGARRAY")

See also

Common GUI ARRAY property, Common GUI ORIGSTRUCT property, SYSTEM CREATE

method, SYSTEM LIST2ARRAY method.

ORIGBACKCOLOR property

Description

Returns the original "BackColor" attribute from the structure used to create the

object at runtime.

Property Value

This property is an @Svm-delimited dynamic array containing the BackColor values

that were set in the Form Designer when the object was saved.

<0,0,1> Color From (RGB value)
<0,0,2> Color To (RGB value)
<0,0,3> Gradient style

If a simple solid color was chosen only the first sub-value will be present.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_BKCOLOR$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_BACKCOLOR –

this name is still supported for backwards compatibility.

Example

 // Get the BackColor attributes when the current control was created

 OrigBkColor = Get_Property(CtrlEntID, "ORIGBACKCOLOR")

See also

Common GUI BACKCOLOR property, Common GUI ORIGSTRUCT property, SYSTEM

CREATE method.

ORIGENABLED property

Description

Returns the original "Enabled" attribute from the structure used to create the object

at runtime.

Property Value

This property is an integer containing the Enabled value that was set in the Form

Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_ENABLED$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_ENABLED – this

name is still supported for backwards compatibility.

Example

 // Get the Enabled value when the current control was created

 OrigEnabled = Get_Property(CtrlEntID, "ORIGENABLED")

See also

Common GUI ENABLED property, Common GUI ORIGSTRUCT property, SYSTEM

CREATE method.

ORIGFONT property

Description

Returns the original "Font" value from the structure used to create the object at

runtime.

Property Value

This property is an @Svm-delimited dynamic array representing the Font that was set

in the Form Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_LOGFONT$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_FONT – this name

is still supported for backwards compatibility.

Example

 // Get the Font value when the current control was created

 OrigFont = Get_Property(CtrlEntID, "ORIGFONT")

See also

Common GUI FONT property, Common GUI ORIGSTRUCT property, SYSTEM CREATE

method.

ORIGFORECOLOR property

Description

Returns the original "ForeColor" value from the structure used to create the object at

runtime.

Property Value

This property is an integer representing the RBG value for the ForeColor value that

was set in the Form Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_FORECOLOR$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_FORECOLOR – this

name is still supported for backwards compatibility.

Example

 // Get the ForeColor value when the current control was created

 OrigFgColor = Get_Property(CtrlEntID, "ORIGFORECOLOR")

See also

Common GUI FORECOLOR property, Common GUI ORIGSTRUCT property, SYSTEM

CREATE method.

ORIGHEIGHT property

Description

Returns the original Height value used when the object was created at runtime.

Property Value

This property is an integer containing the Height coordinate that was set in the Form

Designer when the object was saved.

If this is a negative value it refers to the desired client-area height only (e.g. "-300"

means the object was created with a client area height of "300" DIPs). Negative

values only apply to WINDOW (Form) objects.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_HIGH$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_HIGH – this name

is still supported for backwards compatibility.

Example

 // Get the Height value used when the current control was created

 OrigHeight = Get_Property(CtrlEntID, "ORIGHEIGHT")

See also

Common GUI HEIGHT property, Common GUI ORIGHIGH property, Common GUI

ORIGSIZE property, Common GUI ORIGSTRUCT property, SYSTEM CREATE method.

ORIGHIGH property

Description

Returns the original Height value used when the object was created at runtime.

Property Value

This property is an integer containing the Height coordinate that was set in the Form

Designer when the object was saved.

If this is a negative value it refers to the desired client-area height only (e.g. "-300"

means the object was created with a client area height of "300" DIPs). Negative

values only apply to WINDOW (Form) objects.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property is a synonym for the ORIGHEIGHT property.

In previous versions of OpenInsight this property was named ORIG_HIGH – this name

is still supported for backwards compatibility.

Example

 // Get the Height value used when the current control was created

 OrigH = Get_Property(CtrlEntID, "ORIGHIGH")

See also

Common GUI HEIGHT property, Common GUI ORIGHEIGHT property, Common GUI

ORIGSIZE property, Common GUI ORIGSTRUCT property, SYSTEM CREATE method.

ORIGLABEL property

Description

Returns the original "Label" value from the structure used to create the object at

runtime.

Property Value

This property is an @Svm-delimited dynamic array representing the Label values that

were set in the Form Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_LABEL$ value from the ORIGSTRUCT property.

Note that not all object types use or support a Label attribute. Please consult the

documentation for the specific control types for more details.

In previous versions of OpenInsight this property was named ORIG_LABEL – this name

is still supported for backwards compatibility.

Example

 // Get the Label value when the current control was created

 OrigLabel = Get_Property(CtrlEntID, "ORIGLABEL")

See also

Common GUI ORIGSTRUCT property, SYSTEM CREATE method.

ORIGLEFT property

Description

Returns the original Left coordinate used when the object was created at runtime.

Property Value

This property is an integer containing the Left coordinate that was set in the Form

Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_X$ value from the ORIGSTRUCT property.

Example

 // Get the Left coordinate used when the current control was created

 OrigLeft = Get_Property(CtrlEntID, "ORIGLEFT")

See also

Common GUI LEFT property, Common GUI ORIGSTRUCT property, Common GUI

ORIGX property, SYSTEM CREATE method.

ORIGLIST property

Description

Returns the original "List" attribute from the structure used to create the object at

runtime.

Property Value

This property is an @Svm/@Tm-delimited dynamic array containing the data written

to the object's List attribute when it was saved in the Form Designer, i.e. @Svm-

delimited Rows, with @Tm-delimited Columns (if supported).

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_LIST$ value from the ORIGSTRUCT property.

Note that not all object types use or support a List attribute. Please consult the

documentation for the specific control types for more details.

Example

 // Get the List used when the current control was created

 OrigList = Get_Property(CtrlEntID, "ORIGLIST")

See also

Common GUI LIST property, Common GUI ORIGSTRUCT property, SYSTEM CREATE

method.

ORIGROWVALUE property

Description

Returns the original data as read into a form or control during a form's READ event.

Property Value

If the object is a data-bound form this property returns the "result row" as constructed

during the READ event and used to populate the form's controls. This is not the same

as the ATRECORD or RECORD properties and is not guaranteed to have the same

structure.

If the object is a data-bound control this property returns the data that that was set

in the control by the parent form's READ event.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

The underlying data used for this property is stored in the " OrigResultRow@" common

variable in the form's "Window Common Area".

In previous versions of OpenInsight this property was named ORIG_ROWVALUE – this

name is still supported for backwards compatibility.

Example

 // Get the original data value set for the current control's in the READ event.

 OrigData = Get_Property(CtrlEntID, "ORIGROWVALUE")

See also

Common GUI COLUMN property, Common GUI TABLE property, WINDOW

ATRECORD property, WINDOW RECORD property, WINDOW READ method, WINDOW

READ event.

ORIGSIZE property

Description

Returns the original size attributes from the structure used to create the object at

runtime.

Property Value

This property is a @Fm-delimited dynamic array containing the position values that

were set in the Form Designer when the object was saved.

 <1> Left (X)
 <2> Top (Y)
 <3> Width
 <4> Height

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_X$, PSPOS_Y$, PSPOS_WIDE$ and PSPOS_HIGH$

values from the ORIGSTRUCT property.

Note that for a WINDOW (Form) type, the width and height will always be negative

values, to indicate to the Presentation Server that these are the desired client size

values, rather than the normal size values (the latter always include the non-client

areas values).

In previous versions of OpenInsight this property was named ORIG_SIZE – this name is

still supported for backwards compatibility.

Example

 // Get the Size used when the current control was created

 OrigSize = Get_Property(CtrlEntID, "ORIGSIZE")

See also

Common GUI ORIGSTRUCT property, Common GUI SIZE property, SYSTEM CREATE

method.

ORIGSTRUCT property

Description

Returns the original definition structure (dynamic array) used to create an object at

runtime.

Property Value

This property is an @Vm/@Svm/@Tm delimited dynamic array that defines the

attributes of an object.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

The structure used to create an object is built by the Form compiler at design time. It

can be updated and passed to the SYSTEM CREATE method to create a copy of

that object at runtime.

Equated constants for use with the structure array are defined in the PS_EQUATES

insert record. Type-specific constants are also supplied for each PS type in type

specific insert records such as PS_LISTBOX_EQUATES, PS_EDITTABLE_EQUATES and so

on.

In previous versions of OpenInsight this property was named ORIG_STRUCT – this

name is still supported for backwards compatibility.

Example

 // Get the structure used to create the current control

 CtrlStruct = Get_Property(CtrlEntID, "ORIGSTRUCT")

See also

SYSTEM CREATE method.

ORIGTEXT property

Description

Returns the original "Text" attribute from the structure used to create the object at

runtime.

Property Value

This property is a string containing the text that was set in the Form Designer when

the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_TEXT$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_TEXT – this name is

still supported for backwards compatibility.

Example

 // Get the Text used when the current control was created

 OrigText = Get_Property(CtrlEntID, "ORIGTEXT")

See also

Common GUI ORIGSTRUCT property, Common GUI TEXT property, SYSTEM CREATE

method.

ORIGVALUE property

Description

Returns the original "Value" attribute from the structure used to create the object at

runtime.

Property Value

This property is a string containing the Value that was set in the Form Designer when

the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_VALUE$ value from the ORIGSTRUCT property.

Note that not all object types use or support a Value attribute. Please consult the

documentation for the specific control types for more details.

In previous versions of OpenInsight this property was named ORIG_VALUE – this name

is still supported for backwards compatibility.

Example

 // Get the Value used when the current control was created

 OrigValue = Get_Property(CtrlEntID, "ORIGVALUE")

See also

Common GUI ORIGSTRUCT property, Common GUI VALUE property, SYSTEM CREATE

method.

ORIGTOP property

Description

Returns the original Top coordinate used when the object was created at runtime.

Property Value

This property is an integer containing the Top coordinate that was set in the Form

Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_Y$ value from the ORIGSTRUCT property.

Example

 // Get the Top coordinate used when the current control was created

 OrigTop = Get_Property(CtrlEntID, "ORIGTOP")

See also

Common GUI TOP property, Common GUI ORIGSTRUCT property, Common GUI

ORIGY property, SYSTEM CREATE method.

ORIGVISIBLE property

Description

Returns the original "Visible" attribute from the structure used to create the object at

runtime.

Property Value

This property is an integer containing the Visible value that was set in the Form

Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_VISIBLE$ value from the ORIGSTRUCT property.

In previous versions of OpenInsight this property was named ORIG_VISIBLE – this

name is still supported for backwards compatibility.

Example

 // Get the Visible value when the current control was created

 OrigVisible = Get_Property(CtrlEntID, "ORIGVISIBLE")

See also

Common GUI ORIGSTRUCT property, Common GUI VISIBLE property, SYSTEM CREATE

method.

ORIGWIDE property

Description

Returns the original Width value used when the object was created at runtime.

Property Value

This property is an integer containing the Width coordinate that was set in the Form

Designer when the object was saved.

If this is a negative value it refers to the desired client-area width only (e.g. "-400"

means an object was created with a client area width of "400" DIPs). Negative

values only apply to WINDOW (Form) objects.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property is a synonym for the ORIGWIDTH property.

In previous versions of OpenInsight this property was named ORIG_WIDE – this name

is still supported for backwards compatibility.

Example

 // Get the Width value used when the current control was created

 OrigW = Get_Property(CtrlEntID, "ORIGWIDE")

See also

Common GUI ORIGSIZE property, Common GUI ORIGSTRUCT property, Common GUI

ORIGIWIDTH property, Common GUI WIDTH property, SYSTEM CREATE method.

ORIGWIDTH property

Description

Returns the original Width value used when the object was created at runtime.

Property Value

This property is an integer containing the Width coordinate that was set in the Form

Designer when the object was saved.

If this is a negative value it refers to the desired client-area width only (e.g. "-400"

means an object was created with a client area width of "400" DIPs). Negative

values only apply to WINDOW (Form) objects.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property returns the PSPOS_WIDTH$ value from the ORIGSTRUCT property.

Example

 // Get the Width value used when the current control was created

 OrigW = Get_Property(CtrlEntID, "ORIGWIDTH")

See also

Common GUI ORIGSIZE property, Common GUI ORIGSTRUCT property, Common GUI

Common GUI ORIGWIDE property, Common GUI WIDTH property, SYSTEM CREATE

method.

ORIGX property

Description

Returns the original Left coordinate used when the object was created at runtime.

Property Value

This property is an integer containing the Left coordinate that was set in the Form

Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property is a synonym for the ORIGLEFT property.

In previous versions of OpenInsight this property was named ORIG_X – this name is still

supported for backwards compatibility.

Example

 // Get the X pos used when the current control was created

 OrigLeft = Get_Property(CtrlEntID, "ORIGX")

See also

Common GUI LEFT property, Common GUI ORIGLEFT property, Common GUI

ORIGSTRUCT property, SYSTEM CREATE method.

ORIGY property

Description

Returns the original Top coordinate used when the object was created at runtime.

Property Value

This property is an integer containing the Top coordinate that was set in the Form

Designer when the object was saved.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

This property is a synonym for the ORIGTOP property.

In previous versions of OpenInsight this property was named ORIG_Y – this name is still

supported for backwards compatibility.

Example

 // Get the Y pos used when the current control was created

 OrigTop = Get_Property(CtrlEntID, "ORIGY")

See also

Common GUI TOP property, Common GUI ORIGTOP property, Common GUI

ORIGSTRUCT property, SYSTEM CREATE method.

PAGENUMBER property

Description

Specifies the page number that the specified control will appear on in a multi-page

"Container" parent object such as a panel or form.

Property Value

This property is an integer value specifying the page number. A value of "0"

indicates that an object should occur on all pages.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

This property only applies to controls that are direct children of a multi-page object

such as a form or a panel.

Example

 // Ensure that the current control appear on page 2 of it's parent

 Call Set_Property_Only(CtrlEntID, "PAGENUMBER", 2)

 // Ensure that the current control appears on all pages of it's parent

 Call Set_Property_Only(CtrlEntID, "PAGENUMBER", 0)

See also

Common GUI ALLPAGES property, Container CURRENTPAGE property, Container

PAGECOUNT property, Container PAGECHANGED event, WINDOW PAGE event.

PARENT property

Description

Returns the parent of the specified object. A GUI object can have a parent object –

if does then it is called a child object. A form that has no parent (i.e. the parent is the

Windows desktop), is called a "top-level" form.

Property Value

This property is a string value that contains a valid, fully qualified, control name. Top-

level forms will return a null value for this property.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The PARENT property is implemented internally using the GetParent Windows API

function, so please refer to the documentation on the Microsoft website for further

information on parent and child relationships in Windows.

Example

 // Get the PARENT object of the current control

 CtrlParent = Get_Property(CtrlEntID, "PARENT")

 // Check if the current form is top-level

 IsTopLevel = (Get_Property(@Window, "PARENT") == "")

See also

Common GUI PARENTFORM property, Common GUI GETPARENTFORM method,

Common GUI SETPARENT method.

PARENTFORM property

Description

Returns the name of the parent form for the specified object.

Property Value

This property is a string value that contains a valid, fully qualified, control name.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property is the same as using the GETPARENTFORM method with a "Flags"

parameter of "0".

If the specified object is a top-level form then the object itself is returned.

Example

 // Get the PARENTFORM object of the current control

 ParentForm = Get_Property(CtrlEntID, "PARENTFORM")

 // Check if the current form is top-level

 IsTopLevel = (Get_Property(@Window, "PARENTFORM") == @Window)

See also

Common GUI PARENT property, WINDOW MDIFRAME property, Common GUI

GETPARENTFORM method, Common GUI SETPARENT method

PART property

Description

If the object is data-bound to a key column, then this property specifies the part of

the key that it is bound to.

Property Value

This property is an integer value. It returns "0" if the control is not bound to a key

column, or if the key column is not multipart.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Get the key part that EDL_REFNO is bound to

 KeyPart = Get_Property(@Window : ".EDL_REFNO", "PART")

See also

Common GUI COLUMN property, Common GUI POS property, Common GUI TABLE

property, WINDOW ID property.

POS property

Description

Returns the position of the column, relative to the data table structure, of a data-

bound control.

Property Value

This property is an integer value. It returns "0" if the control is bound to a key column.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Get a list of all key controls on a form

 CtrlMap = Get_Property(@Window, "CTRLMAP")

 Convert @Fm To @Rm In CtrlMap
 PosList = Get_Property(CtrlMap, "POS")

 KeyCtrlIDs = ""
 KeyCtrlParts = ""

 CtrlIdx = 1
 PosIdx = 1

 Loop
 CtrlID = CtrlMap[CtrlIdx,@Rm,TRUE$]
 CtrlIdx = BCol2()+1

 CtrlPos = PosList[PosIdx,@Rm,TRUE$]
 PosIdx = BCol2()+1

 If (CtrlPos == 0) Then
 // It's a key
 KeyCtrlIDs := CtrlID : @Fm
 KeyCtrlParts := Get_Property(CtrlID, "PART") : @Fm
 End
 While (CtrlIdx < BLen(CtrlMap))
 Repeat

 KeyCtrlIDs[-1,1] = ""
 KeyCtrlParts[-1,1] = ""

See also

Common GUI COLUMN property, Common GUI PART property, Common GUI TABLE

property, WINDOW ATRECORD property, WINDOW ID property, WINDOW RECORD

property.

PREVIOUS property

Description

Specifies the previous control in the tab order from the specified control.

Property Value

This property is a string value that should contain a valid, fully qualified, control

name.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property can be used to dynamically change the tab order of control on a form

at runtime.

Example

 // Skip over the next control in the tab order to the
 // one after it

 NextCtrl = Get_Property(CtrlEntid, "NEXT")
 TheCtrlAfterNext = Get_Property(NextCtrl, "NEXT")

 Call Set_Property_Only(CtrlEntId, "NEXT", TheCtrlAfterNext)

 // Now update that control so "tabbing back" from it goes to
 // this control

 Call Set_Property_Only(TheCtrlAfterNext, "PREVIOUS", CtrlEntID)

See also

Common GUI NEXT property.

QUALIFIEDWINMSGS property

Description

Returns a list of Window Messages that trigger a WINMSG event for an object.

Property Value

This property is an @Fm-delimited list of Windows messages that have been qualified

to trigger a WINMSG event.

Each item in the list has the following structure:

<1> Message number
<2> Qualifier string
<3> Event name
<4> SyncFlags

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

N/a.

Example

 // Get a list of all qualified window messages for the current
 // control

 WinMsgList = Get_Property(CtrlEntID, "QUALFIIEDWINMSGS")

See also

Common GUI QUALIFYWINMSG method, Common GUI WINMSG event.

RECT property

Description

Specifies the position and size of a control relative to its parent control using client-

area coordinates. (For a top-level form the coordinates are relative to the Windows

desktop).

Property Value

For both getting and setting the RECT property, the value is an @Fm-delimited array

of integer coordinates:

<1> Left
<2> Top
<3> Right
<4> Bottom

When setting the RECT property, the following optional members may be applied:

<5> Visible flag (-1 to keep an invisible object hidden)
<6> NoSendChange flag (If TRUE$ do not send WM_POSCHANGING)

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No Yes No

Remarks

A coordinate may use a value of " 32768" to be left unchanged when setting the

RECT property.

By default updating an object via the RECT property will make it visible if it is hidden.

Setting the "Visible flag" field to "-1" prevents this.

When container objects (e.g. Forms and Panels) are resized, a SIZE event is normally

raised and any child objects informed of the change. This can be prevented by

setting the " NoSendChange flag" to TRUE$ which prevents Windows from sending a

WM_POSCHANGING message, thereby blocking any notifications.

The RECT property is implemented internally using the SetWindowPos Windows API

function, so please refer to the documentation on the Microsoft website for further

information on repositioning forms and controls in Windows.

Example

 // Get the RECT of the current control and move it's Left coordinate 20 DIPs to the
 // right, decreasing the width of the control by the same amount.
 //
 // If we were using the SIZE property we would have to update both the Left and the
 // Width coordinates to do this, e.g.:

 CtrlSize = Get_Property(CtrlEntID, "SIZE")

 CtrlSize <1> = CtrlSize <1> + 20
 CtrlSize <3> = CtrlSize <3> - 20

 Call Set_Property_Only(CtrlEntID, "SIZE", CtrlSize)

 // However, with the RECT property we only have to adjust the Left coordinate as the
 // Right coordinate stays the same.

 CtrlRect = Get_Property(CtrlEntID, "RECT")

 CtrlRect <1> = CtrlRect <1> + 20

 Call Set_Property_Only(CtrlEntID, "RECT", CtrlRect)

See also

Common GUI BOTTOM property, Common GUI CLIENTSIZE property, Common GUI

HEIGHT property, Common GUI LEFT property, Common GUI RIGHT property,

Common GUI SCREENRECT property, Common GUI SCREENSIZE property, Common

GUI SIZE property, Common GUI TOP property, Common GUI WIDTH property,

WINDOW SCALEUNITS property, WINDOW SIZE event, Appendix K – High-DPI

Programming.

REDRAW property

Description

Specifies if a control is repainted when it is updated,

Property Value

This property is a boolean value. If FALSE$ then any updates to the control that

would cause it to be repainted are ignored. The default value is TRUE$.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

Setting the REDRAW property of a parent object to FALSE$ while manipulating its

child objects is a common way to increase rendering performance and reducing

flicker, as all visual changes will be applied in one operation when the REDRAW

property is reset to TRUE$.

When redrawing is turned off Windows removes the WS_VISIBLE style bit from the

object but doesn't invalidate it, so it doesn't know that it needs repainting and still

appears on the screen. However, because of this it will report that it is no longer

visible, so always check an object's visibility before redrawing is turned off.

It is always best practice to check the state of the REDRAW property before using it,

in case an earlier process has turned it off during any recursive programming.

Example

 // Check if the CHK_SHOWITEMS control is visible - if not we don't want
 // to make the EDB_ITEMDETAILS control visible
 ShowItemsVis = Get_Property(@Window : ".CHK_SHOWITEMS", "VISIBLE")

 // Save the current state of the REDRAW flag before we turn it off
 IsRedraw = Set_Property(@Window, "REDRAW", FALSE$)

 Call Set_Property(@Window : ".CHK_SHOWSTUFF", "VISIBLE", FALSE$)
 Call Set_Property(@WIndow : ".BTN_DELETE", "VISIBLE", FALSE$)
 Call Set_Property(@Window : ".EDB_ITEMDETAILS", "VISIBLE", ShowItemsVis)

 // If the redraw as on originally then turn it back on
 If IsRedraw Then
 Call Set_Property_Only(@Window, "REDRAW", TRUE$)
 End

See also

Common GUI VISIBLE property, Common GUI INVALIDATE method, Common GUI

REPAINT method.

REQUIRED property

Description

Specifies if a control is required to contain data.

Property Value

This property is a boolean value. When set to TRUE$ then the user is not allowed to

move to another control unless the current control contains data unless the parent

form's REQUIREONSAVE property is set (see Remarks below).

For controls that support associated multivalued data, like the EditTable control, this

property will return an @Svm-delimited list of boolean values at runtime (one for

each column in the control).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

By default the check to see if the control has data is performed during the

LOSTFOCUS event (and POSCHANGED for EditTables) – if the check is failed a

message is displayed to the user and the input focus is returned to the control (this is

handled by the REQUIRERR event). This behavior can be too intrusive for many

applications and may be modified by using the parent Form's REQUIREONSAVE

property, where the check is only made when the data is about to be saved.

This property is normally associated with data-bound controls.

Example

 // Set the REQUIRED flag for the current control

 PrevRequired = Set_Property(CtrlEntID, "REQUIRED", TRUE$)

See also

Common GUI VALID property, WINDOW REQUIREONSAVE property, Common GUI

LOSTFOCUS event, Common GUI REQUIRERR event, EDITTABLE POSCHANGED event.

RIGHT property

Description

Specifies the right coordinate of an object relative to its parent.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

Setting this property adjusts the width of the object, it does not affect the LEFT

property.

Coordinates are always relative to the top left corner of the screen, or, for a child

window, the upper left corner of the parent window's client area.

Example

 // Set the RIGHT of the EDB_NOTES EditBox control to position 300 DIPs

 Call Set_Property_Only(@Window : ".EDB_NOTES", "RIGHT", 300)

See also

Common GUI AUTOSIZEWIDTH property, Common GUI CLIENTSIZE property, Common

GUI CLIENTWIDTH property, Common GUI RECT property, Common GUI

RIGHTANCHOR property, Common GUI SCREENRECT property, Common GUI

SCREENSIZE property, Common GUI SIZE property, Common GUI WIDTH property,

WINDOW SCALEUNITS property, WINDOW SIZE event, Appendix K – High-DPI

Programming.

RIGHTANCHOR property

Description

Specifies if the right coordinate of a control maintains the same distance from right

side of its parent object (Form or Panel) when the latter is resized.

For example, if the parent Form's width is increased by 60 pixels, a control with

RIGHTANCHOR set to TRUE$ will be moved across by 60 pixels as well.

Property Value

This property is a boolean value. When Set to TRUE$ changing the control's parent

width will move the control left or right by the same amount. When set to FALSE$ the

control's position is not changed when the parent width is changed.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

If this property is set to TRUE$ the AUTOSIZEWIDTH property is automatically set to

FALSE$.

The RIGHTANCHOR property is preserved and updated as necessary if the object is

moved or resized.

In previous versions of OpenInsight this property was named ANCHORRIGHT – this

name is still supported for backwards compatibility.

Example

 // Set the RIGHTANCHOR of the EDB_NOTES EditBox control

 Call Set_Property_Only(@Window : ".EDB_NOTES", "RIGHTANCHOR", TRUE$)

See also

Common GUI AUTOSIZEWIDTH property, Common GUI CLIENTWIDTH property,

Common GUI CLIENTSIZE property, Common GUI RECT property, Common GUI RIGHT

property, Common GUI WIDTH property, Common GUI SCREENRECT property,

Common GUI SCREENSIZE property, Common GUI SIZE property, Common GUI MOVE

method, Common GUI OFFSET method, WINDOW SIZE event.

SCALEFACTOR property

Description

Returns the scale-factor value for the specified object.

Property Value

This property is a numeric value representing the current scale-factor or

"magnification" setting for the object.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The scale-factor is set by the top-level parent form that owns the object. It is

combined with the form's DPI settings to give an overall magnification value that is

applied when objects are positioned and drawn.

Example

 // Get the scale factor for the EDL_SURNAME control

 ScaleFactor = Get_Property(@Window : ".EDL_SURNAME", "SCALEFACTOR")

See also

Common GUI DPI property, Common GUI SCALEMETRICS property, Common GUI

SCALEUNITS property, WINDOW SCALEFACTOR property, WINDOW SCALED event,

Appendix K – High-DPI Programming.

SCALEMETRICS property

Description

Returns an array of scaling information for the specified object.

Property Value

This property is an @Fm-delimied array of scaling information:

<1> DPI X value
<2> DPI Y value
<3> ScaleFactor value
<4> ScaleUnits value

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

This property is basically an amalgamation of the DPI, SCALEFACTOR and

SCALEUNITS properties, and is intended as an optimization – one property call

instead of three.

Equated constants for use with the SCALEMETRICS property can be found in the

PS_EQUATES insert record.

Example

 // Get the scale metrics for the EDL_SURNAME control
 $Insert PS_Equates

 ScaleMetrics = Get_Property(@Window : ".EDL_SURNAME", "SCALEMETRICS")

 ScaleFactor = ScaleMetrics<PS_SCM_SCALEFACTOR$>

See also

Common GUI DPI property, Common GUI SCALEFACTOR property, Common GUI

SCALEUNITS property, WINDOW SCALEFACTOR property, WINDOW SCALED event,

Appendix K – High-DPI Programming.

SCALEUNITS property

Description

Returns the scale units value for the specified object. The scale units are a setting

that determines how coordinates used in properties, methods events are interpreted

– either as DIPs (Device Independent Pixels) or actual pixels

Property Value

This property is a numeric value representing the current scale units used for getting

and setting scaled properties for the object. It can be one of the following values:

Value Description

0 Use DIPs (the default).

1 Use pixels.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No No

Remarks

The scale-units are set by the top-level parent form that owns the object.

Equated constants for use with the SCALEUNITS property can be found in the

PS_EQUATES insert record.

Example

 // Get the scale units for the EDL_SURNAME control

 ScaleUnits = Get_Property(@Window : ".EDL_SURNAME", "SCALEUINTS")

See also

All properties marked as "Scaled", WINDOW SCALEUNITS property, Appendix K – High-

DPI Programming.

SCREENRECT property

Description

Specifies the position of an object in screen coordinates, i.e. relative to the primary

monitor desktop area.

Property Value

The SCREENRECT property is an @Fm-delimited array of integer coordinates:

<1> Left
<2> Top
<3> Right
<4> Bottom

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No Yes No

Remarks

The SCREENRECT property is implemented internally using the GetWindowRect

Windows API function, so please refer to the documentation on the Microsoft

website for further information.

Example

 // Get the SCREENRECT of the current window

 ScreenRect = Get_Property(@Window, "SCREENRECT")

See also

Common GUI RECT property, Common GUI SCREENSIZE property, Common GUI

SCALEUNITS property, Appendix K – High-DPI Programming.

SCREENSIZE property

Description

Specifies the position and size of an object in screen coordinates, i.e. relative to the

primary monitor desktop area.

Property Value

The SCREENSIZE property is an @Fm-delimited array of integer coordinates and

dimensions:

<1> Left
<2> Top
<3> Width
<4> Height

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No Yes No

Remarks

The SCREENSIZE property is implemented internally using the GetWindowRect

Windows API function, so please refer to the documentation on the Microsoft

website for further information.

Example

 // Get the SCREENSIZE of the current window

 ScreenSize = Get_Property(@Window, "SCREENSIZE")

See also

Common GUI SCREENRECT property, Common GUI SIZE property, SCALEUNITS

property, Appendix K – High-DPI Programming.

SCROLLBARS property

Description

Specifies which scrollbars are used with an object that supports them.

Property Value

This property is a numeric value representing which scrollbars are visible. It can be

one of the following values:

Value Description

0 No scrollbars (the default).

1 Horizontal only.

2 Vertical only.

3 Both horizontal and vertical.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Not all objects support scrollbars, and of those do some may not support all options.

Please refer to the documentation for the individual object type for any differences.

Equated constants for use with the SCROLLBARS property can be found in the

PS_EQUATES insert record.

Example

 // Only show the vertical scrollbar for the EDB_NOTES control
 $Insert PS_Equates

 Call Set_Property_Only(@Window : ".EDB_NOTES", "SCROLLBARS", PS_SB_VERTICAL$)

See also

Common GUI HSCROLL event, Common GUI VSCROLL event.

SIZE property

Description

Specifies the position and size of a control relative to its parent control using client-

area coordinates. (For a top-level form, the coordinates are relative to the Windows

desktop).

Property Value

For both getting and setting the SIZE property the value is an @Fm-delimited array of

integer coordinates:

<1> Left
<2> Top
<3> Width
<4> Height

When setting the SIZE property, the following optional members may be applied:

<5> Visible flag (-1 to keep an invisible object hidden)
<6> NoSendChange flag (If TRUE$ do not send WM_POSCHANGING)

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No Yes No

Remarks

A coordinate may use a value of " 32768" to be left unchanged when setting the

SIZE.

By default updating an object via the SIZE property will make it visible if it is hidden.

Setting the "Visible flag" field to "-1" prevents this.

When container objects (e.g. Forms and Panels) are resized, a SIZE event is normally

raised and any child objects are also informed of the change. This can be

prevented by setting the " NoSendChange flag" to TRUE$ which prevents Windows

from sending a WM_POSCHANGING message, thereby blocking any notifications.

The SIZE property is implemented internally using the SetWindowPos Windows API

function, so please refer to the documentation on the Microsoft website for further

information on repositioning forms and controls in Windows.

Example

 // Get the SIZE of the current form and increase the width by 100 DIPs
 // without sending a change notification

 WinSize = Get_Property(@Window, "SIZE")

 WinSize<3> = WinSize<3> + 100
 WinSize<6> = TRUE$

 Call Set_Property_Only(@Window, "SIZE", WinSize)

See also

Common GUI BOTTOM property, Common GUI CLIENTSIZE property, Common GUI

HEIGHT property, Common GUI LEFT property, Common GUI RIGHT property,

Common GUI SCREENRECT property, Common GUI SCREENSIZE property, Common

GUI SIZE property, Common GUI TOP property, Common GUI WIDTH property,

WINDOW SCALEUNITS property, WINDOW SIZE event, Appendix K – High-DPI

Programming.

STYLE property

Description

Gets or sets the "Windows Style" value for a specified object.

Every GUI object in Windows has a set of numeric bit flags that control their

behaviour and attributes, and in OpenInsight these are usually exposed as

properties. Windows combines these flags (via a bitwise "OR" operation) into a single

32-bit integer value that is called the "Windows Style". At runtime this value can

tested against a known bitmask value to see if a flag (i.e. a bit) is set.

Property Value

This property is a string value containing a C-style hexadecimal representation of an

unsigned 32-bit integer, i.e. a hex number prefixed by "0X" (This representation

generally makes it easier to see which flags are set without needing to use any

programs).

e. g.

The style value 2496135168 is stored as "0X94C80000" in the STYLE property,

and from this we can easily see that the following flags are set:

 WS_POPUP (0x80000000)
 WS_VISIBLE (0x10000000)
 WS_CLIPSIBLINGS (0x04000000)
 WS_CAPTION (0x00C00000)
 WS_SYSMENU (0x00080000)

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

Direct manipulation of Window Styles via this property is not recommended as those

flags that can be altered safely are already exposed as object properties (several

flags cannot be altered after the object has been created and some attempts may

even cause an application to crash).

Equated constants for use with the STYLE property can be found in the

MSWIN_WINDOWSTYLE_EQUATES insert record. Type-specific constants can be found

in other inserts such a MSWIN_EDIT_EQUATES, MSWIN_LISTBOX_EQUATES and so on.

Further information on Windows Styles can be found om the Microsoft website.

Example

 // Get the STYLE property of the current form and check to see if
 // it has a caption bar
 $Insert MSWin_WindowStyle_Equates

 WinStyle = Get_Property(@Window, "STYLE")

 // It's in C-hex format so remove the "0X" prefix and convert
 // to a decimal integer

 WinStyle = Iconv(WinStyle[3,\00\], "MX")

 // Now we can test the style to see if the WS_CAPTION$ bit is
 // set

 If BitAnd(WinStyle, WS_CAPTION$) Then
 // Window has a caption bar …
 End

See also

Common GUI STYLEEX property, Common GUI STYLEEXN property , Common GUI

STYLEN property.

STYLEEX property

Description

Gets or sets the "Windows Extended Style" value for a specified object.

As GUI objects in the system gained more functionality Microsoft found that a 32-bit

integer was not enough to store all of the different attributes, so they added a

second set of bit flags called the Windows Extended Style.

Property Value

This property is a string value containing a C-style hexadecimal representation of an

unsigned 32-bit integer, i.e. a hex number prefixed by "0X". See the STYLE property

for more information on how this format is used.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property behaves in the same manner as the STYLE property except that it works

with a different set of flags.

Direct manipulation of Window Extended Styles via this property is not

recommended as those flags that can be altered safely are already exposed as

object properties (several flags cannot be altered after the object has been

created and some attempts may even cause an application to crash).

In previous versions of OpenInsight this property was named STYLE_EX – this name is

still supported for backwards compatibility.

Equated constants for use with the STYLEEX property can be found in the

MSWIN_WINDOWSTYLE_EQUATES insert record. Type-specific constants can be found

in other inserts such a MSWIN_EDIT_EQUATES, MSWIN_LISTBOX_EQUATES and so on.

Further information on Windows Extended Styles can be found on the Microsoft

website.

Example

 // Get the STYLEEX property of the EDB_NOTES control and check to see if
 // it has a "client edge"
 $Insert MSWin_WindowStyle_Equates

 WinStyleEx = Get_Property(@Window : ".EDB_NOTES", "STYLEEX")

 // It's in C-hex format so remove the "0X" prefix and convert
 // to a decimal integer

 WinStyleEx = Iconv(WinStyleEx[3,\00\], "MX")

 // Now we can test the style to see if the WS_EX_CLIENTEDGE$ bit is
 // set

 If BitAnd(WinStyleEx, WS_EX_CLIENTEDGE$) Then
 // Control has a sunken edge
 End

See also

Common GUI STYLE property, Common GUI STYLEEXN property, Common GUI STYLEN

property.

STYLEEXN property

Description

Gets or sets the "Windows Extended Style" value for a specified object using a

decimal integer format rather than the default C-hexadecimal format.

Property Value

This property is an unsigned integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property behaves in the same manner as the normal STYLEEX property except

that the returned value is a decimal integer, making it easier to use with numeric

functions without any conversion – e.g. compare the example code below with the

example from the STYLEEX property.

Example

 // Get the STYLEEX property of the EDB_NOTES control and check to see if
 // it has a "client edge"
 $Insert MSWin_WindowStyle_Equates

 WinStyleEx = Get_Property(@Window : ".EDB_NOTES", "STYLEEX")

 // Now we can test the style to see if the WS_EX_CLIENTEDGE$ bit is
 // set

 If BitAnd(WinStyleEx, WS_EX_CLIENTEDGE$) Then
 // Control has a sunken edge
 End

See also

Common GUI STYLE property, Common GUI STYLEEX property, Common GUI STYLEN

property.

STYLEN property

Description

Gets or sets the "Windows Style" value for a specified object using a decimal integer

format rather than the default C-hexadecimal format.

Property Value

This property is an unsigned integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

This property behaves in the same manner as the normal STYLE property except that

the returned value is a decimal integer, making it easier to use with numeric

functions without any conversion – e.g. compare the example code below with the

example from the STYLE property.

Example

 // Get the STYLE property of the current form and check to see if
 // it has a caption bar
 $Insert MSWin_WindowStyle_Equates

 WinStyle = Get_Property(@Window, "STYLEN")

 // Now we can test the style to see if the WS_CAPTION$ bit is
 // set

 If BitAnd(WinStyle, WS_CAPTION$) Then
 // Window has a caption bar …
 End

See also

Common GUI STYLE property, Common GUI STYLEEX property, Common GUI

STYLEEXN property.

TABLE property

Description

If the object is data-bound then this property specifies the database table that it is

bound to.

Property Value

This property is a string value and must be a valid database table name.

For controls that support associated multivalued data, like the EditTable control, this

property will return an @Svm-delimited list of bound data tables at runtime.

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get No No Yes

Remarks

N/a.

Example

 // Get the database table name of the EDL_SURNAME control

 TableName = Get_Property(@Window : ".EDL_SURNAME", "TABLE")

See also

Common GUI COLUMN property, Common GUI PART property, Common GUI POS

property, Common GUI MV property, WINDOW ATRECORD property, WINDOW ID

property, WINDOW RECORD property, Common GUI CALCULATE event.

TOP property

Description

Specifies the top coordinate of an object relative to its parent object.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

Setting this property adjusts the top coordinate of the object, it does not affect the

height so the object is moved, not resized.

Coordinates are always relative to the top left corner of the screen, or, for a child

window, the upper left corner of the parent window's client area.

Example

 // Set the TOP coordinate of the EDB_NOTES EditBox control to position 10

 Call Set_Property_Only(@Window : ".EDB_NOTES", "TOP", 10)

See also

Common GUI AUTOSIZEHEIGHT property, Common GUI BOTTOMANCHOR property,

Common GUI CLIENTHEIGHT property, Common GUI CLIENTSIZE property, Common

GUI HEIGHT property, Common GUI RECT property, Common GUI SCREENRECT

property, Common GUI SCREENSIZE property, Common GUI SIZE property, Common

GUI MOVE method, Common GUI OFFSET method, WINDOW SCALEUNITS property,

WINDOW SIZE event, Appendix K – High-DPI Programming.

TEXT property

Description

Specifies the text associated with the object.

Property Value

This property is a string value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

The TEXT property of an object is used differently by different types of object, as can

be seen in this summary table:

Control Type TEXT property description

Bitmap BITMAP

CheckBox The Checkbox label.

ColorDropDown The contents of the EditLine.

ComboBox The contents of the EditLine.

DateTime The date displayed in the control.

EditLine The contents of the control.

EditBox The contents of the control.

EditTable The contents of a cell.

GroupBox The text displayed in the border of the box.

GroupBoxEx The text displayed in the border of the box.

Hyperlink The link text displayed in the control.

ListBox The text of the currently selected item.

Panel The text displayed in the control.

ProgressBar The progress text displayed in the control.

PushButton The text on the button.

RadioButton The label for the button.

RichEditBox The contents of the control.

Static The text displayed in the control.

TabControl The text for the active tab.

Window (Form) The text in the form's title bar.

This list is not exhaustive, so details on the behavior the TEXT property can be found in

the documentation for each object type (if supported).

The TEXT property will be affected the SYSTEM CHARMAP property if the latter is set.

For more information on this property please refer to the Windows documentation

regarding the GetWindowText and SetWindowText API functions on the Microsoft

website.

Example

 // Update the TEXT of the current form …

 Call Set_Property_Only(@Window, "TEXT", "New Entry")

See also

Common GUI DEFPROP property, SYSTEM CHARMAP property.

TIMER property

Description

Starts or stops the generation of TIMER events for an object.

Property Value

This property is an @Fm-delimited array of two numeric values:

<1> Delay in milliseconds between each TIMER event
<2> Initial delay (in milliseconds) before the first TIMER event fires

The initial delay is optional and defaults to Delay value in field <1>

To stop TIMER events, set a value of "0".

Property Traits

Development Runtime Indexed Scaled Synthetic

N/a Get/Set No No No

Remarks

In previous versions of OpenInsight only forms supported a TIMER property and a

TIMER event. In this version all GUI objects support them.

For more information on Windows Timers please refer to the documentation

regarding the SetTimer and KIllTimer functions, and the WM_TIMER message on the

Microsoft Website.

Example

 // Execute the TIMER event once and only once after n millseconds

 Call Set_Property_Only(CtrlEntID, "TIMER", 0 : @Fm : n)

 // Execute the TIMER event every n millseconds starting after n
 // millseconds

 Call Set_Property_Only(CtrlEntID, "TIMER", n)

 // Execute the TIMER event every n millseconds starting immediately

 Call Set_Property_Only(CtrlEntID, "TIMER", n : @Fm : 0)

 // Stop generating TIMER events

 Call Set_Property_Only(CtrlEntID, "TIMER", 0)

See also

SYSTEM IDLEPROC property, SYSTEM ADDIDLEPROC method, Common GUI TIMER

event.

TOOLTIP property

Description

Specifies the tooltip to display for an object.

A tooltip is a small message that appears over an object when a user hovers over it

with the mouse. It is to offer hints on how the object is used. There are several

options available that control the appearance of a tooltip as can be seen in the

examples below:

Simple Tooltip:

Balloon Tooltip (rounded corners):

Centered Balloon Tooltip with Title and Large Icon:

Property Value

This property is an @Fm-delimited array structured as follows:

<1> Text (multiple lines may be @Tm-delimited)
<2> Maximum width (optional)
<3> Title
<4> Icon ("*", "!", "H", or filename)
<5> Large Icon flag (TRUE$/FALSE$)
<6> Balloon style flag (TRUE$/FALSE$)
<7> Centered style (TRUE$/FALSE$)

Only the text (field <1>) is required for a tooltip to be displayed. The other fields are

optional.

A tooltip may display an icon if a Title is defined as well. A standard system icon may

be used by specifying one of the characters below:

 "*" Information icon

 "!" Warning icon

 "H" Error icon

A filename can also be specified in the same manner as the WINDOW ICON

property.

Icons may be displayed in a "Large" format (32x32 pixels), or in a "Small" format

(16x16 pixels). Use the boolean "Large Icon" flag in field <5> to specify this.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

Some objects, such as ListBoxes and PropertyGrids have other options for displaying

tooltips, so they automatically show the contents of an item.

Equated constants for use with tooltip programming can be found in the

PS_TOOLTIP_EQUATES insert record.

Further information on ToolTips can be found in the Windows documentation on the

Microsoft website.

Example

 $Insert PS_ToolTip_Equates

 // Display a simple tooltip for the current control

 TTInfo = ""
 TTInfo<PS_TOOLTIP_POS_TEXT$> = "Click here to do stuff"

 Call Set_Property_Only(CtrlEntID, "TOOLTIP", TTInfo)

 // Display a multiline balloon tooltip for the current control

 ToolText = "Here's a list of the things"
 ToolText := @Tm : ""
 ToolText := @Tm : "Item One"
 ToolText := @Tm : "Item Two"

 TTInfo = ""
 TTInfo<PS_TOOLTIP_POS_TEXT$> = ToolText
 TTInfo<PS_TOOLTIP_POS_BALLOON$> = TRUE$

 Call Set_Property_Only(CtrlEntID, "TOOLTIP", TTInfo)

 // Display a centered balloon tooltip for the current control
 // with a title and a large icon

 TTInfo = ""
 TTInfo<PS_TOOLTIP_POS_TEXT$> = "Don't click this button. Ever."
 TTInfo<PS_TOOLTIP_POS_TITLE$> = "Danger Danger Danger"
 TTInfo<PS_TOOLTIP_POS_ICON$> = "!" ; // Warning
 TTInfo<PS_TOOLTIP_POS_LARGEICON$> = TRUE$
 TTInfo<PS_TOOLTIP_POS_BALLOON$> = TRUE$
 TTInfo<PS_TOOLTIP_POS_CENTERED$> = TRUE$

 Call Set_Property_Only(CtrlEntID, "TOOLTIP", TTInfo)

See also

COMBOBOX SHOWITEMTOOLTIPS property, LISTBOX SHOWITEMTOOLTIPS property,

PROPERTYGRID SHOWTOOLTIPS property, TABCONTROL SHOWTOOLTIPS property,

WINDOW ICON property, Msg stored procedure, Appendix J – System Icons.

TRANSLUCENCY property

Description

Specifies the degree of transparency applied to an object's background when it is

painted. Note that the transparency effect will not apply to an object's non-client

area borders, nor to text and glyphs, though it will affect a background image.

Flat PushButton control with 50% TRANSLUCENCY applied:

Static control with 60% TRANSLUCENCY applied:

Property Value

This property is an integer value between 1 and 100, which represents the

percentage of transparency applied to the background. A value of 0 means fully

opaque, while a value of 100 means fully transparent (i.e. the background will not

be drawn).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

Be aware that the use of translucency does involve extra overhead when drawing

controls because there are the extra steps of painting in the parent and then

blending it with the control's background – while the PS attempts to mitigate this

using cached bitmaps and double-buffering there will always be some impact.

Example

 // Set the TRANSLUCENCY of EDB_NOTES to 60%

 PrevVal = Set_Property(@Window : ".EDB_NOTES", "TRANSLUCENCY", 60)

 // Remove the TRANSLUCENCY from EDB_NOTES

 PrevVal = Set_Property(@Window : ".EDB_NOTES", "TRANSLUCENCY", 0)

 // Remove the EDB_NOTES background

 PrevVal = Set_Property(@Window : ".EDB_NOTES", "TRANSLUCENCY", 100)

See also

Common GUI BACKCOLOR property, Common GUI VISIBLE property, WINDOW

TRANSLUCENCY property.

VALID property

Description

Specifies the Validation Input pattern for a control. This pattern is used to verify user-

inputted data and convert it to an "internal format" for storage and processing.

For example, dates in OpenInsight are held internally as simple integer values – so an

input conversion needs to be applied to a date string that a user would enter like

"01/03/2020".

Property Value

This property is a string value and must be one of the following:

• A null string (no validation or conversion applied).

• One or more OpenInsight input conversion patterns such as "(DE)".

o Multiple patterns are supported if separated by a delimiter:

▪ To OR multiple patterns together use an @Vm delimiter.

▪ To AND multiple patterns together use an "_" delimiter.

At design time the following special strings may also be used:

• "<<None>>" – same as a null string, i.e. no conversion applied.

• "<<Default>>" – If the control is data-bound then the database column's input

validation pattern is used, otherwise this is treated as a null string.

For controls that support associated multivalued data, like the EditTable control, this

property will return an @Svm-delimited list of patterns at runtime (one for each

column in the control).

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

By default the check to see if the control passes a validation check is performed

during the LOSTFOCUS event (and the POSCHANGED event for EditTables) – if the

check is failed a message is displayed to the user and the input focus is returned to

the control (this is handled by the VALIDERR event).

This property is normally associated with data-bound controls.

Example

 // Set the validation pattern for the EDL_DOB control check for a
 // European date format:
 //
 // "DE" (dd/mm/yyyy)
 //
 // (you know, the date format that makes sense ;).

 PrevVal = Set_Property(@Window : ".EDL_DOB", "VALID", "DE")

 // Set the validation pattern for the EDL_TEST control check for a range
 // of numeric values between 0 and 99, OR between 300 and 399

 NewVal = "(0,99)" : @Vm : "(300,399)"

 PrevVal = Set_Property(@Window : ".EDL_TEST", "VALID", NewVal)

 // Set the validation pattern for the EDL_TEST control to verify that
 // the data entered is a valid european date (DE) AND passes the checks
 // in the AGE_CHECK stored procedure

 NewVal = "(DE)_[AGE_CHECK]"

 PrevVal = Set_Property(@Window : ".EDL_TEST", "VALID", NewVal)

See also

Common GUI CONV property, Common GUI REQUIRED property, Common GUI

VALIDMSG property, Common GUI REQUIRERR event, Common GUI VALIDERR event.

VALIDMSG property

Description

Specifies alternative text for a validation message.

When an object fails a validation check the system displays an error message with

some default text such as:

 The input "%1%" does not pass the validation criteria "%2%"

The VALIDMSG property can be set and used instead of the default text if desired.

Property Value

This property is a string. Multiple lines may be delimited by "|". It can also contain the

following tokens which are replaced at runtime with the appropriate data:

%1% - Replaced with the input data that failed the check
%2% - Replaced with the pattern used for the check
%3% - Replaced with the name of the object that failed the check

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No Yes

Remarks

The default text for validation messages is stored in the SYSENV TXT_VALIDATION

record, and the "UI146" resource string in the SYSENV SYSTEM_RESOURCES record.

Example

 // Set a custom validation message for the current control

 valText = 'Are you serious? Really?||'
 valText := 'How on earth is "%1%" ever going to pass a "%2%" check eh?||'
 valText := "Go back to %3% and try again, and this time get it right!"

 Call Set_Property_Only(CtrlEntID, "VALIDMSG", valText)

See also

Common GUI VALID property, Common GUI VALIDERR event.

VISIBLE property

Description

Specifies if a control is visible or not.

Property Value

The VISIBLE property is an integer value that specifies how the control is displayed.

For a standard control it can be one of the following values:

Value Description

0 The control is hidden.

1 The control is visible.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No No No

Remarks

The VISIBLE property is implemented internally using the ShowWindow Windows API

function and the property value actually corresponds to the function's nCmdShow

parameter values. For most controls only the SW_SHOW (1) and SW_HIDE(0) values

apply, while other types such as WINDOW (Form) objects support more.

Constants for these values are defined in the MSWIN_SHOWWINDOW_EQUATES insert

record.

Example

 $Insert MsWin_ShowWindow_Equates

 // Example - Hiding a control
 Call Set_Property_Only(ctrlEntID, "VISIBLE", SW_HIDE$)

See also

WINDOW VISIBLE property.

WIDTH property

Description

Specifies the width of an object.

Property Value

This property is an integer value.

Property Traits

Development Runtime Indexed Scaled Synthetic

Get/Set Get/Set No Yes No

Remarks

The WIDTH property includes an object's non-client area as well the client area.

Example

 // Set the WIDTH of the EDB_NOTES EditBox control to position 360 DIPs

 Call Set_Property_Only(@Window : ".EDB_NOTES", "WIDTH", 360)

See also

Common GUI AUTOSIZEWIDTH property, Common GUI CLIENTSIZE property, Common

GUI CLIENTWIDTH property, Common GUI RECT property, Common GUI

RIGHTANCHOR property, Common GUI SCREENRECT property, Common GUI

SCREENSIZE property, Common GUI SIZE property, WINDOW SCALEUNITS property,

WINDOW SIZE event, Appendix K – High-DPI Programming.

Common GUI Methods

These methods apply to most GUI forms and controls except where noted in

individual control descriptions later.

Name Description

ATTACHMENU Attaches a context menu to an object without displaying it.

CALCULATE Forces a control bound to a symbolic (calculated) data

column to re-evaluate its contents.

GETCHILDLIST Returns a list of child objects for the specified parent object.

DRAGDETECT Determines if a user is trying to drag on object.

FINDINITFOCUS Returns the name of the first child control of a parent object

that can accept the input focus.

GETPARENTFORM Return the parent form for an object.

INVALIDATE Marks an area of an object as invalid so Windows will

repaint it.

MOVE Moves the control or form to new coordinates

OFFSET Moves the control or form to new coordinates by an offset

amount.

POSTWINMSG Posts a window message to the specified object.

QUALIFYWINMSG Qualifies a Window Message so it can be trapped in a

WINMSG event.

REPAINT Repaints a control.

SCALEFONT Scales an unscaled FONT structure relative to the current

scale factor of the specified object.

SCALESIZE Scales an unscaled SIZE structure relative to the current

scale factor of the parent form.

SCALEVALUES Scales an unscaled array of values relative to the current

scale factor of the specified object.

SENDWINMSG Sends a window message to the specified object.

SETPARENT Moves the specified object and any child objects to a new

parent object.

SETZORDER Changes the position of the specified object within its

parent object's Z-Order.

SHOWDATABINDING Displays data-binding information for the specified object.

SHOWHELP Displays help information for the specified object.

SHOWMENU Displays the context menu for the specified object.

SHOWNOTES Displays quick-help for the specified object.

SHOWOPTIONS Displays the input options for the specified control.

TRACKPOPUPMENU Creates and displays a context menu for the specified

object.

UNSCALEFONT Unscales an scaled FONT structure relative to the current

scale factor of the specified object.

UNSCALESIZE Unscales an scaled SIZE structure relative to the current

scale factor of the specified object.

UNSCALEVALUES Unscales an scaled array of values relative to the current

scale factor of the specified object.

ATTACHMENU method

Description

Attaches a context menu to an object without displaying it.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "ATTACHMENU", MenuID)

Parameters

Name Required Description

MenuID Yes Fully-qualified repository ID of the context menu to attach.

Returns

Returns TRUE$ if the menu was attached, FALSE$ otherwise. Error information is

reported via the Get_Status stored procedure.

Remarks

This method normally used to "pre-create" a context menu for an object rather than

waiting until the first time the menu is used. This is necessary when the menu has

accelerator keys that might needed before the menu has been displayed.

This method uses the ContextMenu ATTACHMENU function to display the menu.

Example

 // Example - attach the ITEMS_MENU context menu to the LST_ITEMS control
 $Insert RTI_SSP_Equates

 MenuID = @AppID<1> : "*CONTEXTMENU**ITEMS_MENU"

 Call Set_Status(SETSTAT_OK$)
 IsOK = Exec_Method(@Window : ".ITEMS_MENU", "ATTACHMENU", MenuID)
 If IsOK Else
 Call Get_Status(sspErr)
 End

See also

Common GUI CONTEXTMENU property, Common GUI SHOWMENU method,

Common GUI TRACKPOPUPMENU method, Common GUI CONTEXTMENU event,

Common GUI INITCONTEXTMENU event, Common GUI MENU event, ContextMenu

stored procedure.

CALCULATE method

Description

Forces a control bound to a symbolic (calculated) data column to re-evaluate its

contents by triggering the CALCULATE event.

Syntax

 Status = Exec_Method(CtrlEntID, "CALCULATE", CtrlColumn)

Parameters

Name Required Description

CtrlColumn No If the object is an EditTable this parameter specifies the index

of the EditTable column to recalculate. If no index is

specified all EditTable columns in the control bound to

symbolic data columns will be re-calculated.

Returns

The CALCULATE event status. If this is not null then an error has occurred.

Remarks

N/a.

Example

 // Example – recalculate the 3rd column in the EDT_INVOICES EditTable
 // control

 Status = Exec_Method(@Window : ".EDT_INVOICES", "CALCULATE", 3)

See also

Common GUI COLUMN property, Common GUI TABLE property, Common GUI

CALCULATE event, Get_EventStatus stored procedure,

DRAGDETECT method

Description

Determines if the user is trying to drag an object. It captures the mouse and tracks

its movement until the user releases the button, presses the ESC key, or moves the

mouse outside the drag rectangle around the specified point.

This method should be called from an object's BUTTONDOWN event.

Syntax

 IsDragging = Exec_Method(CtrlEntID, "DRAGDETECT", MouseButton, MouseX, MouseY)

Parameters

Name Required Description

MouseButton Yes Numeric value specifying the mouse button that was clicked

down to begin the drag.

 0 Left button
 1 Right button
 2 Middle button

MouseX Yes Specifies the Left (X) coordinate where the mouse button

was clicked down relative to the parent's client area.

MouseY Yes Specifies the Top (Y) coordinate where the mouse button

was clicked down relative to the parent's client area.

Returns

If the user moved the mouse outside of the drag rectangle while holding down the

button this method returns TRUE$. If the button was released inside the drag

rectangle, or the ESC key was pressed it returns FALSE$.

Remarks

The system drag rectangle defines the number of pixels on either side of a mouse-

down point that the mouse pointer can move before a drag operation begins. This

allows the user to click and release the mouse button easily without unintentionally

starting a drag operation.

The width and height of the drag rectangle are specified by the SM_CXDRAG and

SM_CYDRAG values returned by the GetSystemMetrics function. Please refer to the

Windows documentation on the Microsoft website for more details.

Example

 // Example BUTTONDOWN event code - check if the user wants to "drag"
 // the current obejct, and if so capture the mouse messages so that
 // all subsequent MOUSEMOVE events will be directed to it.

 If Exec_Method(CtrlEntID, "DRAGDETECT", MouseButton, xDown, yDown) Then
 // User wants to drag, so capture the mouse...
 Call Set_Property_Only(CtrlEntID, "MOUSECAPTURED", TRUE$)
 End

See also

Common GUI CURSOR property, Common GUI MOUSECAPTURED property,

Common GUI BUTTONDOWN event, Common GUI BUTTONUP event, Common GUI

LOSTCAPTURE event, Common GUI MOUSEMOVE event.

FINDINITFOCUS method

Description

Returns the name of the first child control of a parent object that can accept the

input focus. This could be the parent object itself if it can accept the focus.

Syntax

 InitFocusID = Exec_Method(CtrlEntID, "FINDINITFOCUS")

Parameters

N/a.

Returns

A string value containing the name of a control that can accept the input focus, or

null if none are found.

Remarks

This method is generally used with forms to find a control to pass the focus too.

Example

 // Find a control on the ADM_CONTACTS form to pass the focus too

 InitFocusID = Exec_Method("ADM_CONTACTS", "FINDINITFOCUS")

 If BLen(InitFocusID) Then
 Call Set_Property_Only("SYSTEM", "FOCUS", InitFocusID)
 End

See also

Common GUI FOCUS property, SYSTEM FOCUS property, Common GUI GOTFOCUS

event, Common GUI LOSTFOCUS event.

GETCHILDLIST method

Description

This method returns a list of child object IDs for the specified parent object that

match the specified filter criteria and options.

Syntax

 ChildList = Exec_Method(CtrlEntID, "GETCHILDLIST", TypeID, RecurseFlag, |

 NoSortFlag, VisibleOnlyFlag, PageNumber)

Parameters

Name Required Description

TypeID No If specified then only objects of this type are returned,

otherwise objects of any type may be returned.

RecurseFlag No Normally, when the ParentID parameter is set only direct

children of that parent will be returned. If RecurseFlag is set

to TRUE$ then all objects that are descendants of ParentID

are returned.

NoSortFlag No By default the list of objects returned in alphabetical order –

if this parameter is TRUE$ then the list is returned with respect

to the Z-order instead.

VisibleOnlyFlag No If TRUE$ then only visible objects are returned.

PageNumber No If specified then only objects with the same PageNumber

property will be returned.

Returns

An @Fm-delimited list of PS objects matching the filter criteria, or null if no matches

are found.

Remarks

This method is a thin wrapper around the SYSTEM OBJECTLIST method.

Example

 // Example - return a list of visible MDI child forms for the current form
 // (which we assume is an MDI frame form).

 MdiChildren = Exec_Method(@Window : ".MDICLIENT", "GETCHILDLIST", "WINDOW")

See also

SYSTEM OBEJCTLIST property.

GETPARENTFORM method

Description

Returns the name of the parent form for the specified object. Depending on the

options passed this may be the direct parent form, the first non-child parent form, or

a top-level form.

Syntax

 ParentForm = Exec_Method(CtrlEntID, "GETAPRENTFORM", Flags)

Parameters

Name Required Description

Flags No Numeric value specifying options for the method:

 0 Returns the parent form
 1 Returns the first non-child parent form
 2 Returns the root top-level parent form

Returns

A string containing the name of the parent form matching the passed Flags.

If the specified object is a top-level form then the object itself is returned.

Remarks

Using this method with a Flags value of "0" is the same as using the PARENTFORM

property.

Equated constants for this method can be found in the PS_EQUATES insert record.

Example

 // Get the top-level form for the current control
 $Insert PS_Equates

 ParentForm = Exec_Method(CtrlEntID, "GETPARENTFORM", PS_GPF_TOPLEVEL$)

See also

Common GUI PARENT property, Common GUI PARENTFORM property, WINDOW

MDIFRAME property, Common GUI SETPARENT method.

INVALIDATE method

Description

Marks an area of an object as invalid so Windows will repaint it.

Syntax

 Unsued = Exec_Method(CtrlEntID, "INVALIDATE", EraseBkGd, |

 UpdateArea, |

 RepaintNow, |

 IncludeNC)

Parameters

Name Required Description

EraseBkgd No If TRUE$ then Windows will erase the background of the

object before painting the contents. Defaults to TRUE$.

UpdateArea No @Fm-delimited array specifying the area, in client

coordinates, to repaint. This is the same as a normal SIZE

property value:

 <1> Left
 <2> Top
 <3> Width
 <4> Height

If null (the default) then the entire object's client area is

repainted.

RepaintNow No If TRUE$ then the object is repainted immediately before the

method returns. Normally objects are painted by Windows

when it processes its message queue, so painting may not

be instant of this parameter is FALSE$ (the default).

IncludeNC No If TRUE$ then an object's non-client area is repainted too.

The default is FALSE$.

Returns

Not used – always returns null.

Remarks

The INVALIDATE method is basically a wrapper around the InvalidateRect and

RedrawWindow Windows API functions, please refer to the documentation for these

functions on the MSDN website for more details.

Coordinates are interpreted as DIPs or PX based on the parent form's SCALEUNITS

property.

Example

 // Invalidate s section of the current form, erasing the background

 UpdateArea = ""
 UpdateArea<1> = 10
 UpdateArea<2> = 10
 UpdateArea<3> = 200
 UpdateArea<4> = 100

 Call Exec_Method(@Window, "INVALIDATE", TRUE$, UpdateArea)

 // Invalidate the entire EDT_STUFF control, including the non-client area and
 // update it immediately

 Call Exec_Method(@Window : ".EDT_STUFF", "INVALIDATE", TRUE$, "", TRUE$, TRUE$)

See also

Common GUI REDRAW property, Common GUI REPAINT method.

MOVE method

Description

Moves a form or control to new coordinates while preserving its current width and

height.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "MOVE", Left, Top)

Parameters

Name Required Description

Left No Specifies the new Left (X) coordinate. If null then the current

value is kept.

Top No Specifies the new Top (Y) coordinate. If null then the current

value is kept.

Returns

TRUE$ if the object was moved successfully, or FALSE$ otherwise.

Remarks

This method is equivalent to using the LEFT and TOP properties. All coordinates are

relative to the client area of a control's parent, or to the origin of the primary monitor

for a form.

Coordinates are interpreted as DIPs or PX based on the parent form's SCALEUNITS

property.

Example

 // Use the MOVE method to place the EDL_NAME control at a new position

 Left = 10
 Top = 6
 Call Exec_Method(@Window : ".EDL_NAME", "MOVE", Left, Top)

See also

Common GUI LEFT property, Common GUI RECT property, Common GUI SIZE

property, Common GUI TOP property, Common GUI OFFSET method, Common GUI

SIZE event, Appendix K – High DPI Programming.

OFFSET method

Description

Moves a form or control to new coordinates by an offset amount while preserving its

current width and height.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "OFFSET", LeftOffset, TopOffset)

Parameters

Name Required Description

LeftOffset No Specifies the new Left (X) offset amount. If null then the

current value is kept.

TopOffset No Specifies the new Top (Y) offset amount. If null then the

current value is kept.

Returns

TRUE$ if the object was moved successfully, or FALSE$ otherwise.

Remarks

Offset values are interpreted as DIPs or PX based on the parent form's SCALEUNITS

property.

Example

 // Use the OFFSET method to place the EDL_NAME control at a new position
 // 10 DIPs lower and 20 Dips to the left from its current location

 LeftOffset = -20
 TopOffset = 10

 Call Exec_Method(@Window : ".EDL_NAME", "OFFSET", LeftOffset, TopOffset)

See also

Common GUI LEFT property, Common GUI RECT property, Common GUI SIZE

property, Common GUI TOP property, Common GUI MOVE method, WINDOW SIZE

event, Appendix K – High DPI Programming.

QUALIFYWINMSG method

Description

Enables or disables the processing of a specified Windows message for a form or

control. When enabled the object will trigger it's WINMSG event when the message

is received.

Syntax

 PrevQualInfo = Exec_Method(CtrlEntID, "QUALIFYWINMSG", MsgNum, NewQualInfo)

Parameters

Name Required Description

MsgNum Yes Message number to process.

NewQualInfo Yes An @Fm delimited array that specifies how to process the

Windows message identified by MsgNum.

 <1> Enable Flag – TRUE$ to track the message, FALSE$
 to disable tracking. This field is required. If
 TRUE$ then the following fields are valid.

 <2> Qualifier String. Can contain the name of an
 event qualifier to execute rather than the default
 (See Remarks below for more details). This field
 Is optional.

 <3> Event Name - Can contain the name of an event
 to execute rather than the default WINMSG event
 (See Remarks below for more details). This
 field is optional.

 <4> SyncFlags – specifies the priority of the event.
 Can be one of the following values:

 0 : Asynchronous – the event is queued and
 executed as the queue is processed. This
 is the default.

 1 : Basic Sync – the event is executed as soon
 as it is received. If this is not possible
 the event will be discarded.

 2 : Callback Sync – similar to Synchronous,
 except that the event will also be executed
 if the PS is in a "wait state".

 (See Remarks below for more details)

Returns

The previous event qualifier information before any adjustments are made. This can

be used with a subsequent call to QUALIFYWINMSG to reset the default processing.

Remarks

Setting the "Qualifier String"

This allows the system to use a different event script at runtime rather than the

default one. This can be useful when centralizing code – the script may be written

once and then other controls redirected to use it. A qualifier string is defined by two

parts, delimited by a "*" character. These are:

1. The number of arguments the event expects (including the object name and

class), and

2. The ID of a SYSREPOSEVENTEXES object code record to execute when the

event is fired.

E.g.

 3*SYSPROG*CLOSE.WINDOW.OIWIN*
 ^ ^ ^
 | | |
 | |-------------------------|
 | |
 | OIEventExeID
 ArgCount

Setting the "Event Name"

This allows the system to fire a specific named event when the message is received

rather than simply calling the WINMSG event. This may help to structure application

code in a more meaningful fashion.

For example, when tracking the WM_SETFOCUS message, the Event Configuration

dialog may be used to define a custom event called "MYSETFOCUS". If this same

name is used with the QUALIFYWINMSG method then the new MYSETFOCUS event is

triggered rather than the normal WINMSG event when the object receives the

WM_SETFOCUS message.

Setting the "SyncFlags"

Normal PS event processing is executed in an asynchronous fashion, which means it

is placed in a queue and run when the PS checks its message queue. However, this

can be a problem with handling Windows messages as many of them can pass a

pointer to extra data: By the time the event is executed in the PS any pointers will

likely be invalid as the code triggering the Windows message will have finished and

cleaned up memory. To avoid this problem this event should be handled in one of

the following synchronous ("Basic Sync" or "Callback Sync") manners instead

because any pointers passed will still be valid.

In Basic Sync mode the PS attempts to execute the event as soon as it is notified.

However, if it is busy processing a previously executed event then the new one

cannot be processed and will be discarded.

In Callback Sync mode the PS attempts to execute the event as soon as it is notified.

However, if it is busy processing a previously executed event then it checks to see if

that one is actually in a "wait-state", i.e. it Basic+ has called back into the PS through

use of something like a Set_Property call and is waiting for the PS to respond. This

can happen if setting the property generates a Windows notification message

which triggers a PS event – the event can be raised before the Set_Property call

returns. Using the Callback mode is generally a better idea than the Basic

synchronous mode.

Equates for the core Window messages can be found in the

MSWIN_WINDOWMESSAGE_EQUATES insert record. Equates for the control-specific

message like ComboBoxes and EditLines can be found in their respective

MSWIN_<controltype>_EQUATES records.

Example

 // Example : Track the WM_CAPTURECHANGED message

 $Insert MsWin_WindowMessge_Equates
 $Insert Logical

 NewQualInfo = TRUE$
 PrevQualInfo = Exec_Method(CtrlEntID, "QUALIFYWINMSG", |
 WM_CAPTURECHANGED$, |
 NewQualInfo)

 // Do some processing...

 // Stop tracking and reset the event to it's defaults.
 Call Exec_Method(CtrlEntID, "QUALIFYWINMSG", |
 WM_CAPTURECHANGED$, |
 PrevQualInfo)

See also

Common GUI QUALFIEDWINMSGS property, Common GUI QUALIFYEVENT method,

OLECONTROL QUALIFYOLEEVENT method, Common GUI WINMSG event, Appendix

C – Event handling.

POSTWINMSG method

Description

Posts a window message to the specified object and returns without waiting for it to

be processed.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "POSTWINMSG", Msg, wParam, lParam)

Parameters

Name Required Description

Msg Yes Integer specifying the message to be posted.

wParam No Message-specific integer value. Defaults to 0.

lParam No Message-specific integer value. Defaults to 0.

Returns

TRUE$ if the message was posted successfully, FALSE$ otherwise.

Remarks

It is possible to post a message to an object using a direct call to the Windows

PostMessage API function from Basic+. However, the PS and the Basic+ engine

operate on different threads and some window messages are thread-sensitive, so it

is always better to use this method rather than a direct PostMessage call.

Equated constants for common window message values can be found in the

MSWIN_WINDOWMESSAGE_EQUATES insert record.

This method uses the Windows API PostMessage function internally – for further

information please see the Microsoft website.

Example

 // Post a WM_SYSCOMMAND message to the current window to bring up
 // the System Menu
 $Insert MSWin_WindowMessage equates
 $Insert MSWin_SysCommand_Equates
 $Insert MSWin_VirtualKey_Equates

 PostOK = Exec_Method(@Window, "POSTWINMSG", WM_SYSCOMMAND$, SC_KEYMENU$, VK_SPACE$)

See also

Common GUI QUALIFYWINEVENT method, Common GUI SENDWINMSG method,

Common GUI WINMSG event, SYSTEM POSTWINMSG method, SYSTEM

PROCESSWINMSGS method, SYSTEM SENDWINMSG method.

REPAINT method

Description

Forces an object to repaint itself according to a set of specified flags.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "REPAINT", RepaintFlags, UpdateArea)

Parameters

Name Required Description

RepaintFlags No Specifies a bitmask of flags that control how the repaint

request is handled. These flags are the "RDW_" flags from the

Windows RedrawWIndow API function:

 RDW_INVALIDATE (0x0001)
 RDW_INTERNALPAINT (0x0002)
 RDW_ERASE (0x0004)
 RDW_VALIDATE (0x0008)
 RDW_NOINTERNALPAINT (0x0010)
 RDW_NOERASE (0x0020)
 RDW_NOCHILDREN (0x0040)
 RDW_ALLCHILDREN (0x0080)
 RDW_UPDATENOW (0x0100)
 RDW_ERASENOW (0x0200)
 RDW_FRAME (0x0400)
 RDW_NOFRAME (0x0800)

If null is passed then the default flags applied are:

 RDW_ERASE
 RDW_FRAME
 RDW_INVALIDATE
 RDW_UPDATENOW
 RDW_ALLCHILDREN

This paints the object and it's children, along with the non-

client area immediately without waiting for the next

WM_PAINT cycle.

UpdateArea No @Fm-delimited SIZE coordinates of the area to update:

 <1> Left
 <2> Top
 <3> Width
 <4> Height

If null is passed then the entire control is repainted.

Returns

TRUE$ if the object was repainted successfully, or FALSE$ otherwise.

Remarks

The REPAINT method is implemented internally using the RedrawWindow Windows

API function. More information on this function can be found on the Microsoft

website.

Coordinates are interpreted as DIPs or PX based on the parent form's SCALEUNITS

property.

Equated constants for the "RDW_" flag values can be found in the

MSWIN_REDRAWWINDOW_EQUATES insert record.

Example

 // Repaint all of the current control and any children immediately without
 // waiting for the next WM_PAINT cycle

 RepaintOK = Exec_Method(CtrlEntID, "REPAINT")

 // Repaint the part of the current control ignoring any children
 // and the non-client area

 $Insert MsWin_RedrawWindow_Equates

 RepaintFlags = (RDW_ERASE$ + RDW_INVALIDATE$ + RDW_NOCHILDREN$)
 UpdateArea = 0 : @Fm : 0 : @Fm : 200 : @Fm : 100

 RepaintOK = Exec_Method(CtrlEntID, "REPAINT", RepaintFlags, UpdateArea)

See also

Common GUI REDRAW property, Common GUI INVALIDATE method.

SCALEFONT method

Description

Converts a device-independent font structure to a device-dependent font structure

by adjusting its height with respect to the specified object's DPI and SCALEFACTOR.

Syntax

 FontInPX = Exec_Method(CtrlEntID, "SCALEFONT", FontInDIPs)

Parameters

Name Required Description

FontInDIPs Yes Standard OpenInsight @Svm-delimited array representing a

font as per the FONT property.

Returns

An @Svm-delimited array representing a font (as per the FONT property) scaled to

the same factor and DPI as the specified object.

Remarks

Please refer to the FONT property for more details on the font structure.

Example

 // Obtain a font from a control and scale it so it matches the scale on
 // a different control

 // This will be returned in DIPs so it is "unscaled"
 MyFont = Get_Property(@Window : ".MY_CTRL", "FONT")

 // Let's see what it would look like if we were going to set it for
 // another control
 ScaledFont = Exec_Method("ANOTHER_WINDOW.ANOTHER_CTRL", "SCALEFONT", MyFont)

See also

Common GUI DPI property, Common GUI FONT property, Common GUI

SCALEFACTOR property, Common GUI SCALEMETRICS property, Common GUI

UNSCALEFONT method, Appendix K – High DPI Programming.

SCALESIZE method

Description

Converts a device-independent size array to a device-dependent size array by

adjusting its coordinates to the specified object's DPI and SCALEFACTOR.

Syntax

 SizeInPX = Exec_Method(CtrlEntID, "SCALESIZE", SizeInDIPs)

Parameters

Name Required Description

SizeInDIPs Yes Standard OpenInsight @Fm-delimited array representing size

coordinates as per the SIZE property.

Returns

An @Fm-delimited array representing a size (as per the SIZE property) scaled to the

same factor and DPI as the specified object.

Remarks

Please refer to the SIZE property for more details on the size array.

Example

 // Obtain a SIZE from a control and scale it so it matches the scale on
 // a different control

 // This will be returned in DIPs so it is "unscaled"
 MySize = Get_Property(@Window : ".MY_CTRL", "SIZE")

 // Let's see what it would look like if we were going to set it for
 // a different control
 ScaledSize = Exec_Method("ANOTHER_WINDOW.ANOTHER_CTRL", "SCALESIZE", MySize)

See also

Common GUI DPI property, Common GUI SCALEFACTOR property, Common GUI

SCALEMETRICS property, Common GUI SIZE property, Common GUI UNSCALESIZE

method, Appendix K – High DPI Programming.

SCALEVALUES method

Description

Converts a @Fm-delimited array of device-independent numeric values to a device-

dependent array the values with respect to the specified object's DPI and

SCALEFACTOR.

Syntax

 PXVals = Exec_Method(CtrlEntID, "SCALEVALUES", DIPVals)

Parameters

Name Required Description

DIPVals Yes An @Fm-delimited array of device-dependent numeric

values.

Returns

An @Fm-delimited array of values scaled to the same factor and DPI as the specified

object.

Remarks

N/a.

Example

 // Assume we have an array of DIP values that need to be
 // converted to Pixels using the same DPI and scaling factor
 // as the current form

 DIPVals = 120 : @Fm : 160 : @Fm : 20

 PXVals = Exec_Method(@Window, "SCALEVALUES", DIPVals)

See also

Common GUI DPI property, Common GUI SCALEFACTOR property, Common GUI

SCALEMETRICS property, Common GUI UNSCALEVALUES method, Appendix K – High

DPI Programming.

SENDWINMSG method

Description

Sends a window message to the specified object and waits for it to be processed

before returning.

Syntax

 lResult = Exec_Method(CtrlEntID, "SENDWINMSG", Msg, wParam, lParam)

Parameters

Name Required Description

Msg Yes Integer specifying the message to be sent.

wParam No Message-specific integer value. Defaults to 0.

lParam No Message-specific integer value. Defaults to 0.

Returns

An integer with the result from the processed message – this depends on the

message sent.

Remarks

It is possible to send a message to an object using a direct call to the Windows

SendMessage API function from Basic+. However, the PS and the Basic+ engine

operate on different threads and some window messages are thread-sensitive, so it

is always better to use this method rather than a direct SendMessage call.

Equated constants for common window message values can be found in the

MSWIN_WINDOWMESSAGE_EQUATES insert record.

This method uses the Windows API SendMessage function internally – for further

information please see the Microsoft website.

Example

 // Simulate a click on the BTN_TEST button using a pair of down/up mouse messages
 $Insert MSWin_WindowMessage_Equates

 lResult = Exec_Method(@window : ".BTN_TEST", "SENDWINMSG", WM_LBUTTONDOWN$, 0, 0)
 lResult = Exec_Method(@window : ".BTN_TEST", "SENDWINMSG", WM_LBUTTONOP$, 0, 0)

See also

Common GUI QUALIFYWINEVENT method, Common GUI POSTWINMSG method,

Common GUI WINMSG event, SYSTEM POSTWINMSG method, SYSTEM

PROCESSWINMSGS method, SYSTEM SENDWINMSG method.

SETPARENT method

Description

Moves the specified object and any child objects to a new parent object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SETPARENT", ParentID)

Parameters

Name Required Description

ParentID Yes Specifies the name of the new parent object.

Returns

TRUE$ if the object was moved successfully, or FALSE$ otherwise.

Remarks

If the object is moved to a different form its name and the Window Common area is

updated accordingly. The object is also scaled according the destination DPI and

scale factor.

Data-bound controls cannot be moved to a different form.

The SETPARENT method is implemented internally using the SetParent Windows API

function, so please refer to the documentation on the Microsoft website for further

information on parent and child relationships in Windows.

Example

 // Move the PNL_OPTIONS panel, and its child controls, to a different form

 IsOK = Exec_Method("ZZ_ADM_CONFIG.PNL_OPTIONS", "SETPARENT", "ZZ_ADM_CLIENTS")

 If IsOK Then
 // The PNL_OPTIONS panel now has a name of "ZZ_ADM_CLIENTS.PNL_OPTIONS"
 End

See also

Common GUI PARENT property Common GUI PARENTFORM property, Common GUI

GETPARENTFORM method,

SETZORDER method

Description

Changes the position of the specified object within its parent object's "z-order" by

moving it above one of its siblings (every parent object with children has a "z-order"

list which determines the order of which objects appear on front of others).

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SETZORDER", ObjectBeneath)

Parameters

Name Required Description

ObjectBeneath No The name of the object that will be immediately beneath

the specified object in the z-order.

If this parameter is null then the specified object is moved to

the top of the z-order.

If this parameter is "-1" then the specified object is moved to

the bottom of the z-order.

Returns

TRUE$ if the object was moved successfully, or FALSE$ otherwise.

Remarks

A better way to ensure that some objects appear in front of others is to use proper

parent/child relationships instead of making them all siblings and attempting to

control their rendering by setting the z-order (this was common practice in earlier

versions of OpenInsight as support for parent/child relationships was very limited).

It is important to ensure that an object that is higher in the z-order does not partially

overlap the borders of one beneath it, otherwise it may not be rendered correctly.

The SETZORDER method is implemented internally using the SetWindowPos Windows

API function, so please refer to the documentation on the Microsoft website for

further information on changing the z-order.

Example

 // Set the EDL_NAME control above the GRP_MAIN groupbox so the latter doesn't
 // paint over it.

 IsOK = Exec_Method(@Window : ".EDL_NAME", "SETZORDER", @Window : ".GRP_MAIN")

 // Set the TAB_MAIN tab control to the bottom of the z-order

 IsOK = Exec_Method(@Window : ".TAB_MAIN", "SETZORDER", -1)

See also

Common GUI PARENT property, Common GUI SIZE property, WINDOW TOPMOST

property, Common GUI SETPARENT method.

SHOWDATABINDING method

Description

Displays a dialog box with column data-binding information for the specified object.

Syntax

 Call Exec_Method(CtrlEntID, "SHOWDATABINDING")

Parameters

N/a.

Returns

N/a.

Remarks

If this method used against a form (i.e. WINDOW object) a simple list of tables bound

to the form is displayed instead of the above dialog. If the specified object is not

databound a message is displayed informing the user.

Example

 // Example - display the data-binding information for the EDL_NAME
 // control

 Call Exec_Method(@Window : ".EDL_NAME", "SHOWDATABINDING")

See also

Common GUI COLUMN property, Common GUI TABLE property.

SHOWHELP method

Description

Displays help information for the specified object by triggering its HELP event.

Syntax

 Status = Exec_Method(CtrlEntID, "SHOWHELP")

Parameters

N/a.

Returns

The HELP event status. If this is not null then an error has occurred.

Remarks

N/a.

Example

 // Example - display the help information for the EDL_NAME
 // control

 Status = Exec_Method(@Window : ".EDL_NAME", "SHOWHELP")

See also

Common GUI HELP event, Get_EventStatus stored procedure.

SHOWMENU method

Description

Displays the context menu associated with the specified object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "SHOWMENU", xPos, yPos, bRightAlign)

Parameters

Name Required Description

xPos No The horizontal position in client coordinates where the menu

should be displayed.

yPos No The vertical position in client coordinates where the menu

should be displayed.

bRightAlign No If TRUE$ then the context menu should be right aligned.

Returns

The TRUE$ if the menu was displayed, FALSE$ otherwise. Error information is reported

via the Get_Status stored procedure.

Remarks

This method uses the ContextMenu SHOWMENU function to display the menu.

Unlike most of the underlying Context Menu processing this method uses client

coordinates rather than screen coordinates and translates them to the latter

internally.

Example

 // Example - display the context menu for the EDL_NAME
 // control at coordinates 20, 10
 $Insert RTI_SSP_Equates

 Call Set_Status(SETSTAT_OK$)
 IsOK = Exec_Method(@Window : ".EDL_NAME", "SHOWMENU", 20, 10)
 If IsOK Else
 Call Get_Status(sspErr)
 End

See also

Common GUI CONTEXTMENU property, Common GUI ATTACHMENU method,

Common GUI TRACKPOPUPMENU method, Common GUI CONTEXTMENU event,

Common GUI INITCONTEXTMENU event, Common GUI MENU event, ContextMenu

stored procedure, Get_Status stored procedure.

SHOWNOTES method

Description

Displays quick-help information for the specified object by triggering its NOTES event.

Syntax

 Status = Exec_Method(CtrlEntID, "SHOWNOTES")

Parameters

N/a.

Returns

The NOTES event status. If this is not null then an error has occurred.

Remarks

This event is not related to Lotus Notes functionality that was found in previous

versions of OpenInsight.

Example

 // Example - display the QuickHelp information for the EDL_NAME
 // control

 Status = Exec_Method(@Window : ".EDL_NAME", "SHOWNOTES")

See also

Common GUI NOTES event, Get_EventStatus stored procedure.

SHOWOPTIONS method

Description

Displays options information for the specified object by triggering its OPTIONS event.

Syntax

 Status = Exec_Method(CtrlEntID, "SHOWOPTIONS", MoveFocus, ProcessEvents)

Parameters

Name Required Description

MoveFocus No If TRUE$ then move the focus to the object before triggering

the OPTIONS event.

ProcessEvents No If TRUE$ and MoveFocus is TRUE$ then allow the system to

process any pending events before the OPTIONS event is

triggered.

Returns

The OPTIONS event status. If this is not null then an error has occurred.

Remarks

When moving the focus to the specified object a check is made to see if the move

was successful. If this failed then the OPTIONS event is not triggered.

Example

 // Example - display the options information for the EDL_NAME control, and ensure the
 // focus is moved there first and events processed in case validation is triggered.

 Status = Exec_Method(@Window : ".EDL_NAME", "SHOWIOPTIONS", TRUE$, TRUE$)

See also

SYSTEM FOCUS property, SYSTEM PROCESSEVENTS method, Common GUI OPTIONS

event, Get_EventStatus stored procedure.

TRACKPOPUPMENU method

Description

Creates and displays a context menu for the specified object at the requested

coordinates.

When a context menu item is selected a MENU event is raised and sent to the

parent object.

Syntax

 SuccessFlag = Exec_Method(CtrlEntID, "TRACKPOPUPMENU", |

 MenuStruct, |

 xPos, |

 yPos, |

 Flags)

Parameters

Name Required Description

MenuStruct Yes A dynamic array containing the executable structure of the

menu.

xPos No The horizontal position in screen coordinates where the

menu should be displayed.

yPos No The vertical position in screen coordinates where the menu

should be displayed.

Flags No A numeric bitmask of "TPM_" flags that specify how the menu

is positioned horizontally and vertically.

Returns

TRUE$ if the menu is created successfully, FALSE$ otherwise.

Remarks

This method is called by the CONTEXTMENU event to display the context menu

associated with an object in its CONTEXTMENU property.

This is considered a low-level method. It is better to set the CONTEXTMENU property

and call the SHOWMENU method rather than calling TRACKMENUPOPUP directly.

Equates constants for working with menu structures can be found in the

PS_MENU_EQUATES insert record. Equated constants for the "TPM_" values can be

found in the MSWIN_MENU_EQUATES insert record.

The TRACKPOPUPMENU method is implemented internally using the

TrackPopupMenu Windows API function, so please refer to the documentation on

the Microsoft website for further information.

Example

 // Display a context menu for the current control with two items
 // and a separator

 $Insert PS_Menu_Equates
 $insert MSWin_Menu_Equates

 MenuStruct = ""
 MenuID = CtrlEntID : ".CONTEXTMENU"

 // Header values...
 MenuStruct<0,MENUHDRPOS_NAME$> = MenuID
 MenuStruct<0,MENUHDRPOS_CLASS$> = MENUCLASS_CONTEXT$; // "FLOATING"
 MenuStruct<0,MENUHDRPOS_TYPE$> = MENUTYPE_MENU$; // "MENU"
 MenuStruct<0,MENUHDRPOS_PARENT$> = CtrlEntID

 ItemStruct = ""
 ItemStruct<0,0,MENUPOS_TYPE$> = MENUTYPE_ITEM$
 ItemStruct<0,0,MENUPOS_END$> = FALSE$
 ItemStruct<0,0,MENUPOS_NAME$> = MenuID : ".OPEN_SESAME"
 ItemStruct<0.0,MENUPOS_TEXT$> = "Open Sesame"

 MenuStruct<0,-1> = ItemStruct

 ItemStruct = ""
 ItemStruct<0,0,MENUPOS_TYPE$> = MENUTYPE_SEPARATOR$$
 ItemStruct<0,0,MENUPOS_END$ = FALSE$
 ItemStruct<0.0,MENUPOS_NAME$ = MenuID : ".SEP101"
 ItemStruct<0.0,MENUPOS_TEXT$> = "SEP101"

 MenuStruct<0,-1> = ItemStruct

 ItemStruct = ""
 ItemStruct<0,0,MENUPOS_TYPE$> = MENUTYPE_ITEM$
 ItemStruct<0,0,MENUPOS_END$> = TRUE$
 ItemStruct<0,0,MENUPOS_NAME$> = MenuID : ".CLOSE_SESAME"
 ItemStruct<0.0,MENUPOS_TEXT$> = "Close Sesame"

 MenuStruct<0,-1> = ItemStruct

 IsOK = Exec_Method(CtrlEntID, "TRACKPOPUPMENU", MenuStruct, 10, 10, TPM_RIGHTALIGN$)

See also

Common GUI CONTEXTMENU property, Common GUI ATTACHMENU method,

Common GUI SHOWMENU method, Common GUI CONTEXTMENU event, Common

GUI INITCONTEXTMENU event, Common GUI MENU event, ContextMenu stored

procedure.

UNSCALEFONT method

Description

Converts a device-dependent font structure to a device-independent font structure

by adjusting its height with respect to the specified object's DPI and SCALEFACTOR.

Syntax

 FontInDIPs = Exec_Method(CtrlEntID, "UNSCALEFONT", FontInPX)

Parameters

Name Required Description

FontInPX Yes Standard OpenInsight @Svm-delimited array representing a

font as per the FONT property. This should contain scaled

values.

Returns

An @Svm-delimited array representing a font (as per the FONT property) unscaled

(i.e. to 96DPI and a SCALEFACTOR of 1).

Remarks

Please refer to the FONT property for more details on the font structure.

Example

 // A bit of a contrived example, but... get the font from the MY_CTRL object
 // in it's scaled form (i.e. in pixels)

 // First make sure we're working with pixels ...
 PrevSU = Set_Property(@Window, "SCALEUNITS", PS_SCU_PIXELS$)

 // Now get the font...
 MyFontPX = Get_Property(@Window : ".MY_CTRL", "FONT")

 // Reset the scale units
 Set_Property(@Window, "SCALEUNITS", PrevSU)

 // Let's see what it would look like in DIPs
 MyFontDIPs = Exec_Method(@Window : ".MY_CTRL", "UNSCALEFONT", MyFontPX)

See also

Common GUI DPI property, Common GUI FONT property, Common GUI

SCALEFACTOR property, Common GUI SCALEMETRICS property, Common GUI

SCALEFONT property, Appendix K – High DPI Programming.

UNSCALESIZE method

Description

Converts a device-dependent size array to a device-independent size by adjusting

its coordinates with respect to the specified object's DPI and SCALEFACTOR.

Syntax

 SizeInDIPs = Exec_Method(CtrlEntID, "UNSCALESIZE", SizeInPX)

Parameters

Name Required Description

SizeInPX Yes Standard OpenInsight @Fm-delimited array representing size

coordinates as per the SIZE property.

Returns

An @Fm-delimited array representing a size (as per the SIZE property) unscaled (i.e.

to 96 DPI and a SCALEFACTOR of 1).

Remarks

Please refer to the SIZE property for more details on the size array.

Example

 // A bit of a contrived example, but... get the size from the MY_CTRL object
 // in its scaled form (i.e. in pixels)

 // First make sure we're working with pixels ...
 PrevSU = Set_Property(@Window, "SCALEUNITS", PS_SCU_PIXELS$)

 // Now get the font...
 MySizePX = Get_Property(@Window : ".MY_CTRL", "SIZE")

 // Reset the scale units
 Set_Property(@Window, "SCALEUNITS", PrevSU)

 // Let's see what it would look like in DIPs
 MySizeDIPs = Exec_Method(@Window : ".MY_CTRL", "UNSCALESIZE", MySizePX)

See also

Common GUI DPI property, Common GUI SCALEFACTOR property, Common GUI

SCALEMETRICS property, Common GUI SCALESIZE method, Common GUI SIZE

property, Appendix K – High DPI Programming.

UNSCALEVALUES method

Description

Converts an array of device-dependent numeric values to corresponding device-

independent values by adjusting them with respect to the specified object's DPI and

SCALEFACTOR.

Syntax

 DIPValues = Exec_Method(CtrlEntID, "UNSCALEVALUES", PXValues)

Parameters

Name Required Description

PXValues Yes An @Fm-delimited array of device-dependent numeric

values.

Returns

An @Fm-delimited array of unscaled values (i.e. to 96 DPI and a SCALEFACTOR of 1).

Remarks

N/a.

Example

 // Assume we have an array of pixel values that need to be
 // converted to DIPs using the same DPI and scaling factor
 // as the current form

 PXVals = 120 : @Fm : 160 : @Fm : 20

 DIPVals = Exec_Method(@Window, "UNSCALEVALUES", PXVals)

See also

Common GUI DPI property, Common GUI SCALEFACTOR property, Common GUI

SCALEMETRICS property, Common GUI SCALEVALUES method, Appendix K – High DPI

Programming.

Common GUI Events

These events apply to most GUI forms and controls except where noted in individual

control descriptions later.

Name Description

BUTTONDOWN Occurs when the user presses a mouse button down over an

object.

BUTTONUP Occurs when the user releases a mouse button over an

object.

CALCULATE Occurs when a control bound to a symbolic (calculated)

database column re-evaluates its contents.

CHAR Occurs when a character is entered into a control

CONTEXTMENU Occurs when the system displays a context menu in response

to a right-click.

DROPFILES Occurs when files are dragged from the Windows Explorer

onto an object.

GOTFOCUS Occurs when control receives input focus.

HELP Occurs when the user has requested to see online help.

HSCROLL Occurs when an object is scrolled vertically.

INITCONTEXTMENU Fired to initialize a context menu in response to a right-click.

LOSTCAPTURE Occurs when an object loses mouse capture.

LOSTFOCUS Occurs when a control loses the input focus.

MENU Occurs when an menu item is selected.

MOUSEMOVE Occurs when a mouse movement notification is received by

an object.

NOTES Occurs when the user has requested to see QuickHelp.

OMNIEVENT Generic, developer defined event.

OPTIONS Occurs when a user wants to see input options for a control.

REQUIRERR Occurs when a "required" control has no data.

SYSMSG Occurs when OpenInsight needs to display a system

message.

TIMER Occurs when a specified timer interval for an object has

elapsed.

VALIDERR Occurs when a control fails its validation check.

VSCROLL Occurs when an object is scrolled vertically.

WINMSG Occurs when a qualified window message is received by an

object.

BUTTONDOWN event

Description

Occurs when the user presses a mouse button down over an object.

Syntax

 bForward = BUTTONDOWN(CtrlEntID,

 CtrlClassID,

 xDown,

 yDown,

 xUp,

 yUp,

 CtrlKey,

 ShiftKey,

 MouseButton)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

xDown Client X-coordinate (Left) where the mouse button was pressed down.

yDown Client Y-coordinate (Top) where the mouse button was pressed down.

xUp Client X-coordinate (Left) where the mouse button was released. This is

always zero for a BUTTONDOWN event.

yUp Client Y-coordinate (Top) where the mouse button was released. This is

always zero for a BUTTONDOWN event.

CtrlKey TRUE$ if the Ctrl key was pressed down when the mouse button was pressed,

FALSE$ otherwise.

ShiftKey TRUE$ if the Shift key was pressed down when the mouse button was pressed,

FALSE$ otherwise.

MouseButton Integer specifying which mouse button was pressed:

 "0" - Left button

 "1" - Right button

 "2" - Middle button

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for BUTTONDOWN.

Equated constants for the MouseButton parameter can be found in the PS_EQUATES

insert record.

In previous versions of OpenInsight only forms supported a BUTTONDOWN event. In

this version all GUI objects support them.

For more information on this event please refer to the Windows documentation

regarding the WM_LBUTTONDOWN, WM_RBUTTONDOWN and WM_MBUTTONDOWN

window messages on the Microsoft website.

Example

 Function BUTTONDOWN(CtrlEntID, CtrlClassID, xDown, yDown, xUp, yUp, ShiftKey, |
 CtrlKey, MouseButton)

 // Example BUTTONDOWN event code - check if the user wants to "drag"
 // the current obejct, and if so capture the mouse messages so that
 // all subsequent MOUSEMOVE events will be directed to it.

 $Insert PS_Equates
 $Insert Logical

 // Only drag if it's the left button!
 If (MouseButton == MBUTTON_LEFT$) Then
 If Exec_Method(CtrlEntID, "DRAGDETECT", MouseButton, xDown, yDown) Then
 // User wants to drag, so set a UDP flag that we are dragging and
 // capture the mouse...
 Call Set_Property_Only(CtrlEntID, "@DRAGGING", TRUE$)
 Call Set_Property_Only(CtrlEntID, "MOUSECAPTURED", TRUE$)
 End
 End

 Return TRUE$

See Also

Common GUI CURSOR property, Common GUI MOUSECAPTURED property,

Common GUI BUTTONUP event, Common GUI LOSTCAPTURE event, Common GUI

MOUSEMOVE event.

BUTTONUP event

Description

Occurs when the user releases a mouse button over an object.

Syntax

 bForward = BUTTONUP(CtrlEntID,

 CtrlClassID,

 xDown,

 yDown,

 xUp,

 yUp,

 CtrlKey,

 ShiftKey,

 MouseButton)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

xDown Client X-coordinate (Left) where the mouse button was pressed down.

yDown Client Y-coordinate (Top) where the mouse button was pressed down.

xUp Client X-coordinate (Left) where the mouse button was released.

yUp Client Y-coordinate (Top) where the mouse button was released.

CtrlKey TRUE$ if the Ctrl key was pressed down when the mouse button was released,

FALSE$ otherwise.

ShiftKey TRUE$ if the Shift key was pressed down when the mouse button was released,

FALSE$ otherwise.

MouseButton Integer specifying which mouse button was released:

 "0" - Left button

 "1" - Right button

 "2" - Middle button

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for BUTTONUP.

Equated constants for the MouseButton parameter can be found in the PS_EQUATES

insert record.

In previous versions of OpenInsight only forms supported a BUTTONUP event. In this

version all GUI objects support them.

For more information on this event please refer to the Windows documentation

regarding the WM_LBUTTONUP, WM_RBUTTONUP and WM_MBUTTONUP window

messages on the Microsoft website.

Example

 Function BUTTONUP(CtrlEntID, CtrlClassID, xDown, yDown, xUp, yUp, ShiftKey, |
 CtrlKey, MouseButton)

 // Example BUTTONUP event code - check if we were dragging when the user released
 // the Left mouse button, and if so move it.
 $Insert Ps_Equates
 $Insert Logical

 If (MouseButton = MBUTTON_LEFT$) Then

 IsDragging = Get_Property(CtrlEntID, "@DRAGGING")
 If IsDragging then
 // We are flagged for dragging so remove the flag
 Call Set_Property_Only(CtrlEntID, "@DRAGGING", FALSE$)
 End

 // If we are still captured then release the capture...
 If Get_Property(CtrlEntID, "MOUSECAPTURED") Then
 Call Set_Property_Only(CtrlEntID, "MOUSECAPTURED", FALSE$)
 End Else
 // If the mouse wasn't captured then the drag must have been aborted
 IsDragging = FALSE$
 End

 If IsDragging Then
 // Move, but only if the coordinates are within the parent's client area
 Parent = Get_Property(CtrlEntID, "PARENT")
 ParentClient = Get_Property(Parent, "CLIENTSIZE")

 If (xUp > 0) And (yUp > 0) Then
 If (xUp < ParentClient<1>) And (yUp < ParentClient<2>) Then
 xOffset = (xUp - xDown)
 yOffset = (yUP - yDown)
 Call Exec_Method(CtrlEntID, "OFFSET", xOffset, yOffset)
 End
 End
 End
 End
 End
 End

 Return TRUE$

See Also

Common GUI CURSOR property, Common GUI MOUSECAPTURED property,

Common GUI BUTTONDOWN event, Common GUI LOSTCAPTURE event, Common

GUI MOUSEMOVE event.

CALCULATE event

Description

Occurs when a control bound to a symbolic (calculated) database column re-

evaluates its contents.

Syntax

 bForward = CALCULATE(CtrlEntID, CtrlClassID, CtrlColumn)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

CtrlColumn If the control is an EditTable this parameter identifies the index of the EditTable

column to be re-evalulated. If no index is specified all EditTable columns in

the control bound to symbolic data columns will be re-calculated.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler handles the re-evaluation of the data and updates

the control's contents.

• @Record is set to the RECORD property of the parent form.

• @ID is set to the ID property of the form.

• Any dependent controls are also updated (identified at compile-time)

For forms bound to multiple tables, only controls bound to the columns in the primary

table will be re-calculated.

Example

 Function CALCULATE(CtrlEntID, CtrlClassID, CtrlColumn)

 // Example - set some data in the EDL_DATE property using INVALUE – this will update
 // the RECORD property so that the CALCULATE event uses this data in its processing

 // Update EDL_DATE with the current date
 Call Set_Property(@Window : ".EDL_DATE", "INVALUE", Date())

 Return TRUE$; // Now allow the system to perform the calculation...

See Also

Common GUI COLUMN property, Common GUI TABLE property, WINDOW ID

property, WINDOW RECORD property, Common GUI CALCULATE method,

Get_EventStatus stored procedure.

CHAR event

Description

Occurs when a character is entered into a control with the input focus.

Syntax

 bForward = CHAR(CtrlEntID, CtrlClassID, VirtCode, ScanCode, Ctrl, Shift, Alt)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

VirtCode Contains the character entered if it is a printable character.

ScanCode Contains the virtual key code of the character entered if it is not a printable

character.

Ctrl Boolean value set to TRUE$ if a Control key was pressed down when the

character was entered or FALSE$ otherwise.

Shift Boolean value set to TRUE$ if a Shift key was pressed down when the

character was entered or FALSE$ otherwise.

Alt Boolean value set to TRUE$ if an Alt key was pressed down when the

character was entered or FALSE$ otherwise.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for the CHAR event.

Not all keystrokes will generate a CHAR event because some objects consume them

internally, e.g. the Tab and Enter keys usually do not trigger a CHAR event. A

common workaround for this is to create hidden menu items with an ACCELERATOR

property that matches the desired keystroke and us ethe MENU event to respond to

them.

Virtual key codes are numeric constants Windows uses to identify keystrokes.

Equated constants for these can be found in the MSWIN_VIRTUAL_EQUATES insert

record.

Example

 Function CHAR(CtrlEntID, CtrlClassID, VirtCode, ScanCode, Ctrl, Shift, Alt)

 $Insert MSWin_VirtualKey_Equates
 $Insert Logical

 RetVal = FALSE$

 Begin Case
 Case (VirtCode == " ")
 // If the user enters a space character then treat this as
 // a Click operation
 Call Exec_Method(CtrlEntID, "CLICK")

 Case (ScanCode == VK_DOWN$)
 // If the user hits the "Down" key then move to the next
 // control

 NextCtrl = Get_Property(CtrlEntID, "NEXT")
 Call Set_Property("SYSTEM", "FOCUS". NextCtrl)

 Case (ScanCode == VK_UP$)
 // If the user hits the "Up" key then move to the previous
 // control

 PrevCtrl = Get_Property(CtrlEntID, "PEEVIOUS")
 Call Set_Property("SYSTEM", "FOCUS". PrevCtrl)

 Case OTHERWISE$
 RetVal = TRUE$

 End Case

 Return RetVal

See Also

Common GUI ECHO property.

CONTEXTMENU event

Description

Occurs when the system is about to display a context menu in response to a right

click, giving the application chance to modify the structure if desired.

Syntax

 bForward = CONTEXTMENU(CtrlEntID,

 CtrlClassID,

 MenuID,

 MenuStruct,

 xPos,

 yPos,

 RightAlign,

 AttachOnly)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

MenuID ID of the ContextMenu entity to display.

MenuStruct A dynamic array containing the executable structure of the menu.

xPos Client area X-coordinate where the user clicked.

yPos Client area Y-coordinate where the user clicked.

RightAlign TRUE$ if the menu is to be right-aligned to the object.

AttachOnly If TRUE$ then the TRACKPOPUPMENU method is called with the AttachOnly

flag so that the menu is parsed, created and attached, but not displayed.

This argument should not be changed by a CONTEXTMENU event handler.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event has a system-level handler which performs the following tasks:

• Calling an CONTEXTMENU quick event, if defined.

• Displaying the context menu via the TRACKPOPUPMENU method.

A CONTEXTMENU quick event handler can prevent the context menu from being

displayed by setting the Event Status flag to TRUE$.

Equates constants for working with menu structures can be found in the

PS_MENU_EQUATES insert record.

For more information on this event and context menu processing in general please

refer to the Windows documentation regarding the WM_CONTEXTMENU window

message on the Microsoft website.

Example

 Function CONTEXTMENU(CtrlEntID, CtrlClassID, MenuID, MenuStruct, xPos, yPos, |
 RightAlign, AttachOnly)

 // Example CONTEXTMENU event code - check to see which clipboard items should
 // be enabled
 $Insert PS_Menu_Equates
 $insert PS_Equates

 EditState = Get_Property(CtrlEntID, "EDITSTATEFLAGS")

 xCount = FieldCount(MenuStruct, @Vm)
 For X = 5 to XCount
 If (MenuStruct<0,X>[1,1] == "@") Then
 Null ; // Ignore - it's an imagelist header
 End Else
 If (MenuStruct<0,X,MENUPOS_TYPE$> == MENUTYPE_ITEM$) Then
 ItemName = MenuStruct<0,X,MENUPOS_NAME$>[-1,"B."]
 DisableItem = FALSE$
 Begin Case
 Case (ItemName = "UNDO")
 DisableItem = (EditState<PS_ESF_CANUNDO$> != TRUE$)
 Case (ItemName = "CUT")
 DisableItem = (EditState<PS_ESF_CANCUT$> != TRUE$)
 Case (ItemName = "COPY")
 DisableItem = (EditState<PS_ESF_CANCOPY$> != TRUE$)
 Case (ItemName = "PASTE")
 DisableItem = (EditState<PS_ESF_CANPASTE$> != TRUE$)
 End Case

 If (DisableItem) Then
 MenuStruct<0,X,MENUPOS_GREY$> = TRUE$
 End
 End
 End
 Next

 Return TRUE$

See Also

Common GUI CONTEXTMENU property, Common GUI SHOWMENU method,

Common GUI TRACKPOPUPMENU method, Common GUI INITCONTEXTMENU event,

Common GUI MENU event, ContextMenu stored procedure.

DROPFILES event

Description

Occurs when files are dragged from the Windows Explorer and dropped onto an

object.

Syntax

 bForward = DROPFILES(CtrlEntID,

 CtrlClassID,

 FileList,

 xDrop,

 yDrop)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

FileList @Vm-delimited list of files names that have been dropped onto the object.

xDrop Client X-coordinate where the files were dropped onto the object.

yDrop Client Y-coordinate where the files were dropped onto the object.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event will only be fired if the object's ACCEPTDROPFILES property is TRUE$.

There is no system-level event handler for DROPFILES.

For more information on this event please refer to the Windows documentation

regarding the WS_EX_ACCEPTFILES extended window style and the WM_DROPFILES

message on the Microsoft website.

Example

 Function DROPFILES(CtrlEntID, CtrlClassID, FileList, xDrop, yDrop)

 // Example DROPFILES event for a ListBox called LST_WEBFILES that accepts
 // htm, html, js or css filenames and loads them into its list of items

 $Insert Logical

 // Clear out any current items
 Call Set_Property_Only(CtrlEntID, "LIST", "")

 FileCount = FieldCOunt(FileList, @Vm)
 For FileCtr = 1 To FileCount

 FileName = FileList<FileCtr>

 // Check the extension
 FileExt = FileName[-1,"B."]
 Convert @UPPER_CASE To @lower_case In FileExt

 Locate FileExt In "htm,html,js,css" Using "," Setting Pos Then
 // It's OK so add it to the ListBox
 Call Exec_Method(CtrlEntID, "INSERT", -1, FileName)
 End

 Next

 Return TRUE$

See Also

Common GUI ACCEPTDROPFILES property.

GOTFOCUS event

Description

Occurs when a control receives the input focus.

Syntax

 bForward = GOTFOCUS(CtrlEntID, CtrlClassID, PrevFocusID)

Parameters

Name Description

CtrlEntID Fully qualified name of the control receiving the event.

CtrlClassID Type of object receiving the event.

PrevFocusID Name of the control that previously had the input focus on the same parent

form. (i.e. the form's GOTFOCUSCONTROL property).

This parameter can be null.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event has a system-level handler which performs the following tasks:

• If the control is an EDITTABLE automatic row insertion is processed if needed.

• Check if QBF Mode is on – if so then prevent the next steps from executing.

• Update the control's GOTFOCUSVALUE property.

• Process the DEFVALUE property.

Setting input focus to a control by using its FOCUS property will not trigger this event,

while using the SYSTEM FOCUS property will.

For more information on this event please refer to the Windows documentation

regarding WM_SETFOCUS window message and the SetFocus function on the

Microsoft website.

Example

 Function GOTFOCUS(CtrlEntID, CtrlClassID, PrevFocusID)

 // Example GOTFOCUS event script - skip the current control if the
 // value of another is null

 RetVal = TRUE$
 DataVal = Trim(Get_Property(@Window : ".EDL_DATA", "TEXT"))

 If BLen(DataVal) Then
 // All good, proceed as normal
 Null
 End Else
 // Find the NEXT control in the Tab order and move to
 // that

 NextCtrl = Get_Property(CtrlEntID, "NEXT")
 Call Set_Property("SYSTEM", "FOCUS", NextCtrl)

 // Stop the system-level gotfocus event...
 RetVal = FALSE$

 End

 Return RetVal

See Also

Common GUI CANGETFOCUS property, Common GUI DEFVALUE property, Common

GUI FOCUS property, Common GUI GOTFOCUSVALUE property, SYSTEM FOCUS

property, WINDOW GOTFOCUSCONTROL property, Common GUI LOSTFOCUS event,

WINDOW ACTIVATED event, WINDOW INACTIVATED event.

HELP event

Description

Occurs when the user requests online help for an object.

Syntax

 bForward = HELP(CtrlEntID, CtrlClassID, ItemID, MouseX, MouseY)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

ItemID Specifies the Item that was the source of the help request. This may not be

the same as the control that is handling it.

MouseX If the HELP event was raised from a WM_HELP message this parameter

contains the X (Left) coordinate of the mouse in screen coordinates.

MouseY If the HELP event was raised from a WM_HELP message this parameter

contains the Y (Top) coordinate of the mouse in screen coordinates.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler uses the SYSMSG event to display a "No Help

Available" message.

If a QuickEvent is defined for this event the system level event handler will not

execute.

For more information on this event please refer to the Windows documentation

regarding the WM_HELP window message on the Microsoft website.

Example

 Function HELP(CtrlEntID, CtrlClassID, ItemID, MouseX, MouseY)

 // If the control is data bound use the help from the dictionary
 $Insert Dict_Equates
 $insert Msg_Equates
 $Insert Logical

 RetVal = TRUE$

 ColName = Get_Property(CtrlEntID, "COLUMN")
 TableName = Get_Property(CtrlEntID, "TABLE")

 If Index(ColName, @Svm, 1) Then
 // Assume EditTable - get the current column index.
 CaretPos = Get_Property(CtrlEntID, "CARETPOS")
 ColName = ColName<0,0,CaretPos<1>>
 TableName = TableName<0,0,CaretPos<1>>
 End

 If BLen(ColName) Then
 HelpText = Xlate("DICT." : TableName, ColName, DICT_DESC$, "X")
 Convert @VM:@Tm to "||" in HelpText

 If BLen(HelpText) Then
 MsgArray = ""
 MsgArray<MTEXT$> = HelpText
 MsgArray<MICON$> = "*"
 MsgArray<MJUST$> = "C"
 MsgArray<MCPATION$> = ColName : " help "

 Call Msg(@Window, MsgArray)

 RetVal = FALSE$

 End

 End

 Return RetVal

See Also

Common GUI SHOWHELP method.

HSCROLL event

Description

Occurs when an object is scrolled horizontally.

Syntax

 bForward = HSCROLL(CtrlEntID, CtrlClassID, Value)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

Value Specifies the position that object has been scrolled to.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for HSCROLL.

For more information on this event please refer to the Windows documentation

regarding the WM_HSCROLL window message on the Microsoft website.

Example

 Function HSCROLL(CtrlEntID, CtrlClassID, Value)

 // Example HSCROLL event for an UPDOWN control to update the LBL_VALUE
 // STATIC control with the current position when an arrow is clicked.
 $Insert Logical

 Call Set_Property_Only(@Window : ".TXT_VALUE", "TEXT", Value)

 Return TRUE$

See Also

Common GUI HPOSITION property, Common GUI SCROLLBARS property, Common

GUI VPOSITION property, Common GUI VSCROLL event.

INITCONTEXTMENU event

Description

Fired in response to a right click (actually a WM_CONTEXTMENU) message from

Windows) and initializes the object for displaying an attached context menu

Syntax

 bForward = INITCONTEXTMENU(CtrlEntID,

 CtrlClassID,

 MenuID,

 xPos,

 yPos,

 RightAlign,

 CustomStruct)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

MenuID ID of the ContextMenu entity to display.

xPos Client area X-coordinate where the user clicked.

yPos Client area Y-coordinate where the user clicked.

RightAlign TRUE$ if the menu is to be right-aligned to the object.

CustomStruct Structure for menus constructed at runtime via the ContextMenu stored

procedure.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event has a system-level handler which performs the following tasks:

• Calling the Yield stored procedure to clear any pending events

• Calling an INITCONTEXTMENU quick event, if defined

• Reading the context menu definition from the repository (if not already

cached)

• Converting the structure into v10+ format if needed

• Compiling it into an “executable” format and caching it

• Firing the subsequent CONTEXTMENU event

The intent of the INITCONTEXTMENU event is as a place for the Presentation Server to

begin the context menu process, so as such it is a system tool – it is not really

intended that developers have to interact with this event, although there’s nothing

to prevent this if desired.

An INITCONTEXTMENU quick event handler can prevent the context menu from

being displayed by setting the Event Status flag to TRUE$.

For more information on this event and context menu processing in general please

refer to the Windows documentation regarding the WM_CONTEXTMENU window

message on the Microsoft website.

Example

N/a.

See Also

Common GUI CONTEXTMENU property, Common GUI SHOWMENU method,

Common GUI TRACKPOPUPMENU method, Common GUI CONTEXTMENU event,

Common GUI MENU event, ContextMenu stored procedure.

LOSTCAPTURE event

Description

Occurs when an object capturing mouse messages releases the capture.

Syntax

 bForward = LOSTCPATURE(CtrlEntID, CtrlClassID, CaptureID)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

CaptureID Name of the object that has released the capture.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for LOSTCAPTURE.

For more information on this event please refer to the Windows documentation

regarding the WM_CAPTURECHANGED window message and the ReleaseCapture

function on the Microsoft website.

Example

 Function LOSTCAPTURE(CtrlEntID, CtrlClassID, CaptureID)

 // Example LOSTCAPTURE - check to see if the capture object is being dragged,
 // and if so clear it (see examples for the BUTTONDOWN and BUTTONUP events)

 If Get_Property(CaptureID, "@DRAGGING") Then
 Call Set_Property_Only(CaptureID, "@DRAGGING", FALSE$)
 End

 Return TRUE$

See Also

Common GUI CURSOR property, Common GUI MOUSECAPTURED property,

Common GUI BUTTONDOWN event, Common GUI BUTTONUP event, Common GUI

MOUSEMOVE event.

LOSTFOCUS event

Description

Occurs when a control loses the input focus.

Syntax

 bForward = LOSTFOCUS(CtrlEntID, CtrlClassID, Flag, FocusID)

Parameters

Name Description

CtrlEntID Fully qualified name of the control receiving the event.

CtrlClassID Type of object receiving the event.

Flag Numeric value specifying why the control lost the focus:

 0 - The focus has moved to a control on another (OI or non-OI) form.

 1 - The focus has moved to another control on the same form.

 2 - The LOSTFOCUS event was raised from a MENU event.

FocusID Name of the control that has received the focus. This parameter can be null if

the focus has moved to a non-OI object.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

This event has a system-level handler which performs the following tasks:

• Verifies that the control contains data if the REQUIRED property is TRUE$.

• Validates the data in the control if the VALID property is set.

• Updates the parent form's SAVEWARN property the control's data has

changed.

Setting input focus to a control by using its FOCUS property will not trigger this event,

while using the SYSTEM FOCUS property will.

For more information on this event please refer to the Windows documentation

regarding WM_KILLFOCUS window message and the SetFocus function on the

Microsoft website.

Example

 Function LOSTFOCUS(CtrlEntID, CtrlClassID, Flag, FocusID)

 // Example LOSTFOCUS event script – check to see if the contents of the current
 // control matches a know code - if not report the error via a message and reset
 // the focus
 $Insert Logical

 RetVal = TRUE$
 Code = Get_Property(CtrlEntID, "TEXT")

 Locate Code In "AX,RY,SE" using "," Setting Pos Else

 Call Msg(@Window, "Invalid Code")

 // Reset the focus without triggering any more focus events

 Call Set_Property("SYSTEM", "BLOCKEVENTS", TRUE$)
 Call Set_Property("SYSTEM", "FOCUS", CtrlEntID)
 Call Set_Property("SYSTEM", "BLOCKEVENTS", FALSE$)

 RetVal = FALSE$

 End

 Return RetVal

See Also

Common GUI CANGETFOCUS property, Common GUI FOCUS property, Common

GUI GOTFOCUSVALUE property, SYSTEM FOCUS property, Common GUI LOSTFOCUS

event, WINDOW ACTIVATED event, WINDOW INACTIVATED event.

MENU event

Description

Occurs when a menu item is selected from a context menu or a form dropdown

menu.

Syntax

 bForward = MENU(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the menu object receiving the event.

For a form menu item CtrlEntID has the format:

 <formName> ".MENU." <itemName>

E,g.

 RTI_IDE.MENU.FILE.SAVE
 RTI_IDE.MENU.FILE.CLOSE

For a context menu CtrlEntID has the format:

 <controlName> ".CONTEXTMENU." <itemName>

E.g.

 RTI_OUTPUT_PANEL.LST_ITEMS.CONTEXTMENU.COPY
 RTI_OUTPUT_PANEL.LST_ITEMS.CONTEXTMENU.SELECT_ALL

CtrlClassID Type of object receiving the event.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for MENU.

Context menus cannot have Event Script handlers, they may only have QuickEvent

handlers defined.

Example

 // Example: Assume this is a MENU handler subroutine within in a Commuter Module

 OnMenu:
 // Is this a Form menu or a context menu item

 CtrlID = Field(CtrlEntID, ".", 2)

 OwnerID = CtrlID[1,"."]
 MenuID = CtrlID[Col2()+1,\00\]

 If (OwnerID == "MENU") then
 // It's a form menu
 OwnerID = @Window

 End Else
 OwnerID = CtrlID[1,"."]
 MenuID = CtrlID[Col2()+1,\00\]

 If (MenuID[1,"."] == "CONTEXTMENU") Then

 MenuID = MenuID[Col2()+1,\00\]
 CtrlID = @Window : "." : OwnerID

 Begin Case
 Case (OwnerID = "LST_MENUDES_ITEMS")
 GoSub LstMenuDesItems_OnMenu
 End Case
 End
 End

 Return TRUE$

 LstMenuDesItems_OnMenu:

 Begin Case
 Case (MenuID = "SELECT_ALL")
 Call Exec_Method(CtrlID, "SELECT_ALL")
 End Case

 Return

See Also

Common GUI CONTEXTMENU property, Common GUI SHOWMENU method,

Common GUI TRACKPOPUPMENU method, Common GUI INITCONTEXTMENU event,

ContextMenu stored procedure.

MOUSEMOVE event

Description

Occurs when one of the following mouse messages is sent to an object by Windows:

• Enter – The mouse cursor has begun moving over the client area of an object.

• Move – The mouse cursor is moving over an object's client area.

• Hover – The mouse cursor is hovering over a spot in an object's client area.

• Leave – The mouse cursor has left the client area of an object.

Syntax

 bForward = MOUSEMOVE(CtrlEntID,

 CtrlClassID,

 MouseEvent,

 MouseX,

 MouseY,

 CtrlKey,

 ShiftKey,

 MouseButton)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

MouseEvent Specifies the type of MOUSEMOVE event. Can be one of the following:

"ENTER"

"MOVE"

"HOVER"

"LEAVE"

MouseX Client X-coordinate (Left) of the mouse cursor.

MouseY Client Y-coordinate (Top) of the mouse cursor.

CtrlKey TRUE$ if the Ctrl key is pressed down, or FALSE$ otherwise.

ShiftKey TRUE$ if the Shift key is pressed down, or FALSE$ otherwise.

MouseButton Integer specifying which mouse button pressed down :

 "0" - Left button

 "1" - Right button

 "2" - Middle button

If no buttons are pressed down this argument is null.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

For a "LEAVE" MouseEvent the coordinates, keys and button parameters are always

null.

If the mouse is captured by an object then all mouse events are directed to the

capturing object, even if the mouse is moving over a different object.

There is no system-level event handler for MOUSEMOVE.

Equated constants for the MOUSEMOVE event may be found in the PS_EQUATES

insert record.

For more information on this event please refer to the Windows documentation

regarding the WM_MOUSEMOVE, WM_MOUSEHOVER and WM_MOUSELEAVE

window messages on the Microsoft website.

Example

 Function MOUSEMOVE(CtrlEntID, CtrlClassID, MouseEvent, MouseX, MouseY, |
 CtrlKey, ShiftKey, MouseButton)

 // Update the Form text with the current position of the mouse over the current
 control
 $Insert PS_Equates
 $Insert Logical

 TrackText = ""

 Begin Case
 Case (MouseEvent = MMEVENT_ENTER$)
 TrackText = "The mouse is in the house"
 Case (MouseEvent = MMEVENT_HOVER$)
 TrackText = "And.... what are you waiting for?"
 Case (MouseEvent = MMEVENT_LEAVE$)
 TrackText = "The mouse has left the building"
 Case OTHERWISE$
 TrackText = "Mouse is on the move"
 End Case

 If (MouseEvent = MMEVENT_LEAVE$) Else
 TrackText := " @(" : MouseX : "," : MouseY : ")"
 End

 Call Set_Property(@Window, "TEXT", TrackText)

 Return RetVal

See Also

Common GUI CURSOR property, Common GUI MOUSECAPTURED property,

Common GUI BUTTONDOWN event, Common GUI BUTTONUP event, Common GUI

LOSTCAPTURE event.

NOTES event

Description

Occurs when the user requests to see QuickHelp for an object.

Syntax

 bForward = NOTES(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler performs the following:

• Checks to see if there is a QuickHelp (APPNOTE) entity with the same entity ID

as the current control, and If so this is executed.

• If not a new, blank QuickHelp entity is created with the name entity as the

current control and is then executed, allowing the user to begin entering

their own notes if they wish.

If a QuickEvent is defined for this event the system level event handler will not

execute.

Example

 Function NOTES(CtrlEntID, CtrlClassID)

 // If the control is data bound use the help from the dictionary
 $Insert Dict_Equates
 $insert AppNote_Equates
 $Insert Logical

 RetVal = TRUE$

 ColName = Get_Property(CtrlEntID, "COLUMN")
 TableName = Get_Property(CtrlEntID, "TABLE")

 If Index(ColName, @Svm, 1) Then
 // Assume EditTable - get the current column index.
 CaretPos = Get_Property(CtrlEntID, "CARETPOS")
 ColName = ColName<0,0,CaretPos<1>>
 TableName = TableName<0,0,CaretPos<1>>
 End

 If BLen(ColName) Then
 HelpText = Xlate("DICT." : TableName, ColName, DICT_DESC$, "X")
 Convert @VM:@Tm to "||" in HelpText
 Swap "|" with "
" in HelpText

 If BLen(HelpText) Then

 NoteArray<AHTMLTEXT$> = HelpText
 NoteArray<AREADONLY$> = TRUE$
 NoteArray<ATITLE$> = ColName : " help "

 Call AppNote(@Window, "", NoteArray, "")

 RetVal = FALSE$

 End

 End

 Return RetVal

See Also

Common GUI SHOWNOTES method, AppNote stored procedure

OMNIEVENT event

Description

This is generic user-defined event that is only triggered by developer code – the

system itself will not trigger it. It is intended to be a simple way to add user defined

events to an application.

Syntax

 bForward = OMNIEVENT(CtrlEntID, CtrlClassID, Message, Param1, Param2, |

 Param3, Param4, Param5, Param6, Param7, Param8)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

Message Identifies the function within the OMNIEVENT to call. This is used to branch to

different sub-handlers with the OMNIEVENT handler and is determined by the

developer,

Param1 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param2 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param3 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param4 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param5 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param6 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param7 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Param8 Generic parameter to pass to the event. Its meaning is specific to the

Message being processed.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for OMNIEVENT.

Example

 ///
 // Example: Assume a READ operation on an MDiChild form wants to run an event
 // on its parent MDI Frame to notify it that a record has been opened so that
 // it can synchronize its menu items and buttons etc.

 ///
 // The MDI Child READ handler uses code like this to invoke an OMNIEVENT on
 // its parent, passing it a message called "CHILDREAD" along with the the ID
 // it has just read and its own name...

 MDIFrame = Get_Property(@Window, "MDIFRAME")
 RecordID = Get_Property(@Window, "ID")

 Call Exec_Method(MDIFrame, "DISPATCHEVENT", "OMNIEVENT", "CHILDREAD", |
 @Window, RecordID)

 ///
 // And in the MDIFrame an OMNIEVENT handler is defined to process this:

 Function OMNIEVENT(CtrlEntID, CtrlClassID, Message, Param1, Param2, Param3, |
 Param4, Param5, Param6, Param7, Param8)

 $Insert Logical

 Begin Case
 Case (Message == "CHILDREAD")

 ChildID = Param1
 RecordID = Param2

 // Do whatever

 End Case

 Return TRUE$

See Also

N/a.

OPTIONS event

Description

Occurs when the user requests to see available data-entry options for an object.

Syntax

 bForward = OPTIONS(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler performs the following:

• Checks to see if the targeted object is a dropdown control, such as a

ComboBox, and if so displays its drop-down list.

• Otherwise the SYSMSG event is triggered to display a "No Options Available"

message (If a QuickEvent is defined for this event the SYSMSG event will not

be fired).

Example

 Function OPTIONS(CtrlEntID, CtrlClassID)

 // Display a popup of PART records for the user to select from
 $Insert Popup_Equates
 $Insert Logical

 PartID = Popup(@Window, "", "PARTS_LIST")
 If Blen(PartID) Then
 Call Set_Property(CtrlEntID, "DEFPROP", PartID)
 End

 Return FALSE$

See Also

Common GUI SHOWOPTIONS method.

REQUIRERR event

Description

Occurs when a control with a required property has no data and OpenInsight

intends to display a warning message to the user.

Syntax

 bForward = REQUIRERR(CtrlEntID, CtrlClassID, RequireInfo)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

RequireInfo Depends on the object type.

If the type is a WINDOW (form) this parameter contains an @Fm delimited list

of controls that are missing data.

 Each entry in the list is an @Vm-delimited array of control information:

 <0,1> Name of the control missing data
 <0,2> Column index of missing data (for EditTables)
 <0,3> Row index of missing data (for EditTables)

 (If the list if blank the system scans the form to build this list itself)

If the type is not a WINDOW then this parameter may be the name of

a single control that is missing data. This defaults to CtrlEntID.

In both cases the system attempts to resolve control names to something

more meaningful to an end user:

• If the control is an EditTable the heading text for the appropriate

column is used in place of a control name, or

• If the control is data-bound then the name is replaced with the display

heading text (DICT_DISPLAY$) from the associated dictionary column.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

By default the check to see if the control has data is performed during the

LOSTFOCUS event (and POSCHANGED for EditTables) – if the check is failed a

message is displayed to the user and the input focus is returned to the control (this is

handled by the REQUIRERR event). However, this behavior can be too intrusive for

many applications and may be modified by using the parent Form's

REQUIREONSAVE property, where the check is only made when the data is about to

be saved.

This event has a system-level handler which performs the following tasks:

• Calling a REQUIRERR quick event, if defined.

• Displaying a default "Required" error message to the user.

• Reset the focus to the problem control.

A REQUIRERR quick event handler can prevent the system message from being

displayed by setting the Event Status flag to TRUE$.

Example

 Function REQUIRERR(CtrlEntID, CtrlClassID, RequireInfo)

 // Example - Process the list to use a "NameCapped" version of the control name
 // the text for any non-edit table controls
 Declare Function NameCap
 $Insert Logical

 If BLen(RequireInfo) Else RequireInfo = CtrlEntID

 ReqCount = FieldCount(RequireInfo, @Fm)
 For ReqCtr = 1 To ReqCount
 If (RequireInfo<ReqCtr,2>) Then
 // Assume an EditTable - let the default handler use the
 // column header
 Null
 End Else
 CtrlName = Field(RequireInfo<ReqCtr,1>, ".", 2, 999)
 Convert "_" To " " In CtrlName
 RequireInfo<ReqCtr,1> = NameCap(CtrlName)
 End
 Next

 Return TRUE$

See Also

Common GUI REQUIRED property, Common GUI LOSTFOCUS event, Common GUI

EDITTABLE POSCHANGED event, WINDOW REQUIREONSAVE property.

SYSMSG event

Description

Occurs when OpenInsight attempts display a standard system message to the user.

Syntax

 bForward = SYSMSG(CtrlEntID, CtrlClassID, MsgCode, CancelFlag, StatCode)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

MsgCode Numeric code of the message to display:

1. SaveWarn* : Data may be lost, save first warning
2. DeleteWarn* : Verify delete message
3. <unused> : N/a
4. <unused> : N/a
5. ReadErr* : Error reading row
6. ReadSubErr* : Error reading subsidiary row
7. LockErr* : Error locking row
8. <unused> : N/a
9. WriteLockErr* : No lock for writing
10. NoHelpInfo : No help available
11. NoOptInfo : No options available
12. NewRowInfo* : New row informational (null message)
13. <unused> : N/a
14. QBFInitOff* : Can't execute QBF - not in QBFInit mode
15. NullKeyErr* : Null key - cannot read or write
16. NoLockErr* : Row not locked - cannot save or delete
17. OverWrite* : Record exists on write-without-read
18. DeleteErr* : Error deleting row
19. <unused> : N/a
20. ChangeWarn* : Data may be lost warning – no save option
21. SaveWarnInfo* : SAVEWARN changed informational (null message)

Any other value in this argument is treated as an MSG repository entity name.

Items marked (*) are only handled for data-bound forms.

CancelFlag Boolean "cancel flag". By default this is FALSE$, but the system event handler

will set this the TRUE$ if the user attempts to cancel the operation.

StatCode If passed this is assumed to be one or more status codes as retrieved from the

Get_Status SSP. These will be translated into text format and displayed as the

message text.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

The system-level event handler for SYSMSG displays the requested system message.

In previous versions of OpenInsight the Required and Validation Error messages were

handled by the SYSMSG event. In version 10.1 these have been moved to their

respective system event handlers (REQUIRERR and VALIDERR respectively) to

conform to the standard event flow.

Example

 Function SYSMSG(CtrlEntID, CtrlClassID, MsgCode, CancelFlag, Auxiliary)

 // Example - if we get a SAVEWARN notification then
 // put it in the System Monitor as a tracing program

 $Insert PS_Equates
 $Insert Logical

 Begin Case
 Case(MsgCode = SYSMSG_SAVEWARNINFO$)

 SaveWarn = Get_Property(CtrlEntID, "SAVEWARN")
 LogText = "* SAVEWARN -> " : SaveWarn |
 : " :" : CtrlEntID |
 : " [" : Auxiliary : "]"
 Call Exec_Method("SYSTEMMONITOR", "OUTPUT", LogText)

 End Case

 Return TRUE$

See Also

Common GUI HELP event, Common GUI OPTIONS event, Common GUI REQUIREER

event, Common GUI VALIDERR event, WINDOW SAVEWARN property, WINDOW

CLEAR event, WINDOW DELETE event, WINDOW READ event, WINDOW WRITE event.

TIMER event

Description

Occurs when the amount of time specified by the TIMER property has passed.

Syntax

 bForward = TIMER(CtrlEntID, CtrlClassID)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system level event handler for the TIMER event.

In previous versions of OpenInsight only forms supported a TIMER property and a

TIMER event. In this version all GUI objects support them.

For more information on Windows Timers please refer to the documentation

regarding the SetTimer and KIllTimer functions, and the WM_TIMER message on the

Microsoft Website.

Example

 Function TIMER(CtrlEntID, CtrlClassID)

 // Check to see of a record is present in a file - if so stop the TIMER
 $Insert Logical

 Open "PENDING_TRANSFERS" To hPendingTransfers Then
 Read TransferRec From hPendingTransfers, "%DONE%" Then
 Call Set_Property_Only(CtrlEntID, "TIMER", 0) ; // Stop
 End
 End

 Return TRUE$

See Also

Common GUI TIMER property, SYSTEM IDLEPROC property, SYSTEM ADDIDLEPROC

method.

VALIDERR event

Description

Occurs when a control fails a data validation check and OpenInsight intends to

display a warning message to the user.

Syntax

 bForward = VALIDERR(CtrlEntID, CtrlClassID, ValidInfo)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

ValidInfo Contains an @Fm-delimited array of validation and pattern information:

<1> The data that caused the validation failure

<2> The validation pattern(s) that were used to check the data

<3> Custom validation message from the VALIDMSG property.

(The custom validation message can be null to use the default text)

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

By default a check to see if the control passes a validation check is performed

during the LOSTFOCUS event (and POSCHANGED event for EditTables) – if the check

is failed the VALIDERR event is raised to display a warning.

This event has a system-level handler which performs the following tasks:

• Calling an VALIDERR quick event, if defined.

• Displaying a default "Validation failed" error message to the user.

• Reset the focus to the problem control.

A VALIDERR quick event handler can prevent the system message from being

displayed by setting the Event Status flag to TRUE$.

Example

 Function VALIDERR(CtrlEntID, CtrlClassID, ValidInfo)

 // Example VALIDERR event - Change the validation message and
 // let the system handler display it
 $Insert Logical

 ValidInfo<3> = 'Bad news – "%1%" doesn't compute - computer says No'

 // And pass it into the system handler to display

 Return TRUE$

See Also

Common GUI VALID property, Common GUI VALIDMSG property, Common GUI

LOSTFOCUS event, EDITTABLE POSCHANGED event.

VSCROLL event

Description

Occurs when an object is scrolled vertically.

Syntax

 bForward = VSCROLL(CtrlEntID, CtrlClassID, Value)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

Value Specifies the position that object has been scrolled to.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for VSCROLL.

For more information on this event please refer to the Windows documentation

regarding the WM_VSCROLL window message on the Microsoft website.

Example

 Function VSCROLL(CtrlEntID, CtrlClassID, Value)

 // Example VSCROLL event for an UPDOWN control to update the LBL_VALUE
 // STATIC control with the current position when an arrow is clicked.
 $Insert Logical

 Call Set_Property_Only(@Window : ".TXT_VALUE", "TEXT", Value)

 Return TRUE$

See Also

Common GUI HPOSITION property, Common GUI SCROLLBARS property, Common

GUI VPOSITION property, Common GUI HSCROLL event.

WINMSG event

Description

Occurs when a qualified window message is received by an object.

Syntax

 bForward = WINMSG(CtrlEntID, CtrlClassID, hWnd, Message, wParam, lParam)

Parameters

Name Description

CtrlEntID Fully qualified name of the object receiving the event.

CtrlClassID Type of object receiving the event.

hWnd Handle of the object that received the message.

Message Integer specifying the message that has been received.

wParam Message-specific integer value.

lParam Message-specific integer value.

Returns

TRUE$ or FALSE$. If FALSE$, the program execution returns to the calling procedure. If

TRUE$, the event processing goes to the next level.

Remarks

There is no system-level event handler for WINMSG.

Equates for the core Window messages can be found in the

MSWIN_WINDOWMESSAGE_EQUATES insert record. Equates for the control-specific

message like ComboBoxes and EditLines can be found in their respective

MSWIN_<controltype>_EQUATES records.

For more information window messaging please refer to the Windows

documentation on the Microsoft website.

Example

 Function WINMSG(CtrlEntID, CtrlClassID, hWnd, Message, wParam, lParam)

 // Assume the WM_PARENTNOTIFY message has been qualified and we are listening
 // for a child control being created
 Declare Function RTI_LOWORD
 $Insert MSWin_WindowMessage_Equates
 $Insert Logical

 Begin Case
 Case (Message = WM_PARENTNOTIFY$)
 // From the MS docs:
 //
 // The LOWORD of wParam is the notification code
 // The HIWORD of wParam is the
 // lParam contains the hWnd of the control that has
 // been created

 Code = RTI_LOWORD(wParam)

 Begin Case
 Case (Code = WM_CREATE$)
 // A child was created - if it's an OI object we
 // can get its ID.
 CtrlID = Exec_Method("SYSTEM", "OBJECTID", lParam)

 If BLen(CtrlID) Then
 // An OI Control was created...
 End

 End Case

 End Case

 Return TRUE$

See Also

Common GUI QUALFIEDWINMSGS property, Common GUI POSTWINMSG method,

Common GUI QUALIFYWINMSG method, Common GUI SENDWINMSG method,

.

